skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Non-IID Data Quagmire of Decentralized Machine Learning
Many large-scale machine learning (ML) applications need to perform decentralized learning over datasets generated at different devices and locations. Such datasets pose a significant challenge to decentralized learning because their different contexts result in significant data distribution skew across devices/locations. In this paper, we take a step toward better understanding this challenge by presenting a detailed experimental study of decentralized DNN training on a common type of data skew: skewed distribution of data labels across devices/locations. Our study shows that: (i) skewed data labels are a fundamental and pervasive problem for decentralized learning, causing significant accuracy loss across many ML applications, DNN models, training datasets, and decentralized learning algorithms; (ii) the problem is particularly challenging for DNN models with batch normalization; and (iii) the degree of data skew is a key determinant of the difficulty of the problem. Based on these findings, we present SkewScout, a system-level approach that adapts the communication frequency of decentralized learning algorithms to the (skew-induced) accuracy loss between data partitions. We also show that group normalization can recover much of the accuracy loss of batch normalization.  more » « less
Award ID(s):
1725663
PAR ID:
10314305
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
37th International Conference on Machine Learning, ICML 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Activity recognition is central to many motion analysis applications ranging from health assessment to gaming. However, the need for obtaining sufficiently large amounts of labeled data has limited the development of personalized activity recognition models. Semi-supervised learning has traditionally been a promising approach in many application domains to alleviate reliance on large amounts of labeled data by learning the label information from a small set of seed labels. Nonetheless, existing approaches perform poorly in highly dynamic settings, such as wearable systems, because some algorithms rely on predefined hyper-parameters or distribution models that needs to be tuned for each user or context. To address these challenges, we introduce LabelForest 1, a novel non-parametric semi-supervised learning framework for activity recognition. LabelForest has two algorithms at its core: (1) a spanning forest algorithm for sample selection and label inference; and (2) a silhouette-based filtering method to finalize label augmentation for machine learning model training. Our thorough analysis on three human activity datasets demonstrate that LabelForest achieves a labeling accuracy of 90.1% in presence of a skewed label distribution in the seed data. Compared to self-training and other sequential learning algorithms, LabelForest achieves up to 56.9% and 175.3% improvement in the accuracy on balanced and unbalanced seed data, respectively. 
    more » « less
  2. Batch Normalization (BN) is essential to effectively train state-of-the-art deep Convolutional Neural Networks (CNN). It normalizes the layer outputs during training using the statistics of each mini-batch. BN accelerates training procedure by allowing to safely utilize large learning rates and alleviates the need for careful initialization of the parameters. In this work, we study BN from the viewpoint of Fisher kernels that arise from generative probability models. We show that assuming samples within a mini-batch are from the same probability density function, then BN is identical to the Fisher vector of a Gaussian distribution. That means batch normalizing transform can be explained in terms of kernels that naturally emerge from the probability density function that models the generative process of the underlying data distribution. Consequently, it promises higher discrimination power for the batch-normalized mini-batch. However, given the rectifying non-linearities employed in CNN architectures, distribution of the layer outputs show an asymmetric characteristic. Therefore, in order for BN to fully benefit from the aforementioned properties, we propose approximating underlying data distribution not with one, but a mixture of Gaussian densities. Deriving Fisher vector for a Gaussian Mixture Model (GMM), reveals that batch normalization can be improved by independently normalizing with respect to the statistics of disentangled sub-populations. We refer to our proposed soft piecewise version of batch normalization as Mixture Normalization (MN). Through extensive set of experiments on CIFAR-10 and CIFAR-100, using both a 5-layers deep CNN and modern Inception-V3 architecture, we show that mixture normalization reduces required number of gradient updates to reach the maximum test accuracy of the batch normalized model by ∼31%-47% across a variety of training scenarios. Replacing even a few BN modules with MN in the 48-layers deep Inception-V3 architecture is sufficient to not only obtain considerable training acceleration but also better final test accuracy. We show that similar observations are valid for 40 and 100-layers deep DenseNet architectures as well. We complement our study by evaluating the application of mixture normalization to the Generative Adversarial Networks (GANs), where "mode collapse" hinders the training process. We solely replace a few batch normalization layers in the generator with our proposed mixture normalization. Our experiments using Deep Convolutional GAN (DCGAN) on CIFAR-10 show that mixture normalized DCGAN not only provides an acceleration of ∼58% but also reaches lower (better) "Fréchet Inception Distance" (FID) of 33.35 compared to 37.56 of its batch normalized counterpart. 
    more » « less
  3. We consider the problem of predicting cellular network performance (signal maps) from measurements collected by several mobile devices. We formulate the problem within the online federated learning framework: (i) federated learning (FL) enables users to collaboratively train a model, while keeping their training data on their devices; (ii) measurements are collected as users move around over time and are used for local training in an online fashion. We consider an honest-but-curious server, who observes the updates from target users participating in FL and infers their location using a deep leakage from gradients (DLG) type of attack, originally developed to reconstruct training data of DNN image classifiers. We make the key observation that a DLG attack, applied to our setting, infers the average location of a batch of local data, and can thus be used to reconstruct the target users' trajectory at a coarse granularity. We build on this observation to protect location privacy, in our setting, by revisiting and designing mechanisms within the federated learning framework including: tuning the FL parameters for averaging, curating local batches so as to mislead the DLG attacker, and aggregating across multiple users with different trajectories. We evaluate the performance of our algorithms through both analysis and simulation based on real-world mobile datasets, and we show that they achieve a good privacy-utility tradeoff. 
    more » « less
  4. Roy, Sushmita (Ed.)
    Heterogeneity in different genomic studies compromises the performance of machine learning models in cross-study phenotype predictions. Overcoming heterogeneity when incorporating different studies in terms of phenotype prediction is a challenging and critical step for developing machine learning algorithms with reproducible prediction performance on independent datasets. We investigated the best approaches to integrate different studies of the same type of omics data under a variety of different heterogeneities. We developed a comprehensive workflow to simulate a variety of different types of heterogeneity and evaluate the performances of different integration methods together with batch normalization by using ComBat. We also demonstrated the results through realistic applications on six colorectal cancer (CRC) metagenomic studies and six tuberculosis (TB) gene expression studies, respectively. We showed that heterogeneity in different genomic studies can markedly negatively impact the machine learning classifier’s reproducibility. ComBat normalization improved the prediction performance of machine learning classifier when heterogeneous populations are present, and could successfully remove batch effects within the same population. We also showed that the machine learning classifier’s prediction accuracy can be markedly decreased as the underlying disease model became more different in training and test populations. Comparing different merging and integration methods, we found that merging and integration methods can outperform each other in different scenarios. In the realistic applications, we observed that the prediction accuracy improved when applying ComBat normalization with merging or integration methods in both CRC and TB studies. We illustrated that batch normalization is essential for mitigating both population differences of different studies and batch effects. We also showed that both merging strategy and integration methods can achieve good performances when combined with batch normalization. In addition, we explored the potential of boosting phenotype prediction performance by rank aggregation methods and showed that rank aggregation methods had similar performance as other ensemble learning approaches. 
    more » « less
  5. Many AI platforms, including traffic monitoring systems, use Federated Learning (FL) for decentralized sensor data processing for learning-based applications while preserving privacy and ensuring secured information transfer. On the other hand, applying supervised learning to large data samples, like high-resolution images requires intensive human labor to label different parts of a data sample. Multiple Instance Learning (MIL) alleviates this challenge by operating over labels assigned to the ’bag’ of instances. In this paper, we introduce Federated Multiple-Instance Learning (FedMIL). This framework applies federated learning to boost the training performance in video-based MIL tasks such as vehicle accident detection using distributed CCTV networks. However, data sources in decentralized settings are not typically Independently and Identically Distributed (IID), making client selection imperative to collectively represent the entire dataset with minimal clients. To address this challenge, we propose DPPQ, a framework based on the Determinantal Point Process (DPP) with a quality-based kernel to select clients with the most diverse datasets that achieve better performance compared to both random selection and current DPP-based client selection methods even with less data utilization in the majority of non-IID cases. This offers a significant advantage for deployment on edge devices with limited computational resources, providing a reliable solution for training AI models in massive smart sensor networks. 
    more » « less