Modern machine learning algorithms typically require large amounts of labeled training data to fit a reliable model. To minimize the cost of data collection, researchers often employ techniques such as crowdsourcing and web scraping. However, web data and human annotations are known to exhibit high margins of error, resulting in sizable amounts of incorrect labels. Poorly labeled training data can cause models to overfit to the noise distribution, crippling performance in real-world applications. In this work, we investigate the viability of using data augmentation in conjunction with semi-supervised learning to improve the label noise robustness of image classification models. We conduct several experiments using noisy variants of the CIFAR-10 image classification dataset to benchmark our method against existing algorithms. Experimental results show that our augmentative SSL approach improves upon the state-of-the-art.
more »
« less
LabelForest: Non-Parametric Semi-Supervised Learning for Activity Recognition
Activity recognition is central to many motion analysis applications ranging from health assessment to gaming. However, the need for obtaining sufficiently large amounts of labeled data has limited the development of personalized activity recognition models. Semi-supervised learning has traditionally been a promising approach in many application domains to alleviate reliance on large amounts of labeled data by learning the label information from a small set of seed labels. Nonetheless, existing approaches perform poorly in highly dynamic settings, such as wearable systems, because some algorithms rely on predefined hyper-parameters or distribution models that needs to be tuned for each user or context. To address these challenges, we introduce LabelForest 1, a novel non-parametric semi-supervised learning framework for activity recognition. LabelForest has two algorithms at its core: (1) a spanning forest algorithm for sample selection and label inference; and (2) a silhouette-based filtering method to finalize label augmentation for machine learning model training. Our thorough analysis on three human activity datasets demonstrate that LabelForest achieves a labeling accuracy of 90.1% in presence of a skewed label distribution in the seed data. Compared to self-training and other sequential learning algorithms, LabelForest achieves up to 56.9% and 175.3% improvement in the accuracy on balanced and unbalanced seed data, respectively.
more »
« less
- Award ID(s):
- 1750679
- PAR ID:
- 10141724
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 33
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 4520 to 4527
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern machine learning algorithms typically require large amounts of labeled training data to fit a reliable model. To minimize the cost of data collection, researchers often employ techniques such as crowdsourcing and web scraping. However, web data and human annotations are known to exhibit high margins of error, resulting in sizable amounts of incorrect labels. Poorly labeled training data can cause models to overfit to the noise distribution, crippling performance in real-world applications. In this work, we investigate the viability of using data augmentation in conjunction with semi-supervised learning to improve the label noise robustness of image classification models. We conduct several experiments using noisy variants of the CIFAR-10 image classification dataset to benchmark our method against existing algorithms. Experimental results show that our augmentative SSL approach improves upon the state-of-the-art.more » « less
-
Human activity recognition (HAR) from wearable sensor data has recently gained widespread adoption in a number of fields. However, recognizing complex human activities, postural and rhythmic body movements (e.g., dance, sports) is challenging due to the lack of domain-specific labeling information, the perpetual variability in human movement kinematics profiles due to age, sex, dexterity and the level of professional training. In this paper, we propose a deep activity recognition model to work with limited labeled data, both for simple and complex human activities. To mitigate the intra- and inter-user spatio-temporal variability of movements, we posit novel data augmentation and domain normalization techniques. We depict a semi-supervised technique that learns noise and transformation invariant feature representation from sparsely labeled data to accommodate intra-personal and inter-user variations of human movement kinematics. We also postulate a transfer learning approach to learn domain invariant feature representations by minimizing the feature distribution distance between the source and target domains. We showcase the improved performance of our proposed framework, AugToAct, using a public HAR dataset. We also design our own data collection, annotation and experimental setup on complex dance activity recognition steps and kinematics movements where we achieved higher performance metrics with limited label data compared to simple activity recognition tasks.more » « less
-
Radianti, Jaziar; Dokas, Ioannis; Lalone, Nicolas; Khazanchi, Deepak (Ed.)The shared real-time information about natural disasters on social media platforms like Twitter and Facebook plays a critical role in informing volunteers, emergency managers, and response organizations. However, supervised learning models for monitoring disaster events require large amounts of annotated data, making them unrealistic for real-time use in disaster events. To address this challenge, we present a fine-grained disaster tweet classification model under the semi-supervised, few-shot learning setting where only a small number of annotated data is required. Our model, CrisisMatch, effectively classifies tweets into fine-grained classes of interest using few labeled data and large amounts of unlabeled data, mimicking the early stage of a disaster. Through integrating effective semi-supervised learning ideas and incorporating TextMixUp, CrisisMatch achieves performance improvement on two disaster datasets of 11.2% on average. Further analyses are also provided for the influence of the number of labeled data and out-of-domain results.more » « less
-
In recent years, deep learning has achieved tremendous success in image segmentation for computer vision applications. The performance of these models heavily relies on the availability of large-scale high-quality training labels (e.g., PASCAL VOC 2012). Unfortunately, such large-scale high-quality training data are often unavailable in many real-world spatial or spatiotemporal problems in earth science and remote sensing (e.g., mapping the nationwide river streams for water resource management). Although extensive efforts have been made to reduce the reliance on labeled data (e.g., semi-supervised or unsupervised learning, few-shot learning), the complex nature of geographic data such as spatial heterogeneity still requires sufficient training labels when transferring a pre-trained model from one region to another. On the other hand, it is often much easier to collect lower-quality training labels with imperfect alignment with earth imagery pixels (e.g., through interpreting coarse imagery by non-expert volunteers). However, directly training a deep neural network on imperfect labels with geometric annotation errors could significantly impact model performance. Existing research that overcomes imperfect training labels either focuses on errors in label class semantics or characterizes label location errors at the pixel level. These methods do not fully incorporate the geometric properties of label location errors in the vector representation. To fill the gap, this article proposes a weakly supervised learning framework to simultaneously update deep learning model parameters and infer hidden true vector label locations. Specifically, we model label location errors in the vector representation to partially reserve geometric properties (e.g., spatial contiguity within line segments). Evaluations on real-world datasets in the National Hydrography Dataset (NHD) refinement application illustrate that the proposed framework outperforms baseline methods in classification accuracy.more » « less