skip to main content


Title: Supporting Undergraduate STEMM Education: Perspectives from Faculty Mentors and Learning Assistants in Calculus II
In higher education, Learning Assistants (LAs)—a relatively recent evolution grounded in peer mentorship models—are gaining popularity in classrooms as universities strive to meet the needs of undergraduate learners. Unlike Teaching Assistants, LAs are undergraduate students who receive continuous training from faculty mentors in content-area coaching and pedagogical skills. As near-peers, they assist assigned groups of undergraduates (students) during class. Research on LAs suggests that they are significant in mitigating high Drop-Fail-Withdrawal rates of large enrollment undergraduate science, technology, engineering, mathematics, and medical (STEMM) courses. However, there is a dearth of description regarding the learning between LAs and STEMM faculty mentors. This paper reports on perspectives of faculty mentors and their cooperating LAs in regard to their learning relationships during a Calculus II at a research-oriented university during Spring of 2020. Using an exploratory-descriptive qualitative design, faculty (oral responses) and LAs (written responses) reflected on their relationship. Content analysis (coding) resulted in four salient categories (by faculty and LA percentages, respectively) in: Showing Care and Fostering Relationships (47%, 23%); Honing Pedagogical Skills (27%, 36%); Being Prepared for Class and Students (23%, 28%); and Developing Content Knowledge in Calculus (3%, 13%). Benefits of LAs to faculty and ways to commence LA programs at institutions are also discussed.  more » « less
Award ID(s):
1852944
NSF-PAR ID:
10314445
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Education Sciences
Volume:
11
Issue:
3
ISSN:
2227-7102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This research paper studies the challenges that mathematics faculty and graduate teaching assistants (GTAs) faced when moving active and collaborative calculus courses from in-person to virtual instruction. As part of a larger pedagogical change project (described below), the math department at a public Research-1 university began transitioning pre-calculus and calculus courses to an active and collaborative learning (ACL) format in Fall 2019. The change began with the introduction of collaborative worksheets in recitations which were led by GTAs and supported by undergraduate learning assistants (LAs). Students recitation periods collaboratively solving the worksheet problems on whiteboards. When COVID-19 forced the rapid transition to online teaching, these ACL efforts faced an array of challenges. Faculty and GTA reflections on the changes to teaching and learning provide insight into how instructional staff can be supported in implementing ACL across various modes of instruction. The calculus teaching change efforts discussed in this paper are part of an NSF-supported project that aims to make ACL the default method of instruction in highly enrolled gateway STEM courses across the institution. The theoretical framework for the project builds on existing work on grassroots change in higher education (Kezar and Lester, 2011) to study the effect of communities of practice on changing teaching culture. The project uses course-based communities of practice (Wenger, 1999) that include instructors, GTAs, and LAs working together to design and enact teaching change in the targeted courses alongside ongoing professional development for GTAs and LAs. Six faculty and five GTAs involved in the teaching change effort in mathematics were interviewed after the Spring 2020 semester ended. Interview questions focused on faculty and GTA experiences implementing active learning after the rapid transition to online teaching. A grounded coding scheme was used to identify common themes in the challenges faced by instructors and GTAs as they moved online and in the impacts of technology, LA support, and the department community of practice on the move to online teaching. Technology, including both access and capabilities, emerged as a common barrier to student engagement. A particular barrier was students’ reluctance to share video or participate orally in sessions that were being recorded, making group work more difficult than it had been in a physical classroom. In addition, most students lacked access to a tablet for freehand writing, presenting a significant hurdle for sharing mathematical notation when physical whiteboards were no longer an option. These challenges point to the importance of incorporating flexibility in active learning implementation and in the professional development that supports teaching changes toward active learning, since what is conceived for a collaborative physical classroom may be implemented in a much different environment. The full paper will present a detailed analysis of the data to better understand how faculty and GTA experiences in the transition to online delivery can inform planning and professional development as the larger institutional change effort moves forward both in mathematics and in other STEM fields. 
    more » « less
  2. In this proposal, we will share some initial findings about how teacher and student engagement in cogenerative dialogues influenced the development of the Culturally Relevant Pedagogical Guidelines for Computational Thinking and Computer Science (CRPG-CSCT). The CRPG-CSCT’s purpose is to provide computer science teachers with tools to enhance their instruction by accurately reflecting students’ diverse cultural resources in the classroom. Additionally, the CRPG-CSCT will provide guidance to non-computer science teachers on how to facilitate the integration of computational thinking skills to a broad spectrum of classes in the arts, humanities, sciences, social sciences, and mathematics. Our initial findings shared here are part of a larger NSF-funded research project (Award No. 2122367) which aims to better understand the barriers to entry and challenges for success faced by underrepresented secondary school students in computer science, through direct engagement with the students themselves. Throughout the 2022-23 academic year, the researchers have been working with a small team of secondary school teachers, students, and instructional designers, as well as university faculty in computer science, secondary education, and sociology to develop the CRPG-CSCT. The CRPG-CSCT is rooted in the tenets of culturally relevant pedagogy (Ladson-Billings, 1995) and borrows from Muhammad’s (2020) work in Cultivating Genius: An Equity Framework for Culturally and Historically Responsive Literacy. The CRPG-CCT is being developed over six day-long workshops held throughout the academic year. At the time of this submission, five of the six workshops had been completed. Each workshop utilized cogenerative dialogues (cogens) as the primary tool for organizing and sustaining participants’ engagement. Through cogens, participants more deeply learn about students’ cultural capital and the value of utilizing that capital within the classroom (Roth, Lawless, & Tobin, 2000). The success of cogens relies on following specific protocols (Emdin, 2016), such as listening attentively, ensuring there are equal opportunities for all participants to share, and affirming the experiences of other participants. The goal of a cogen is to reach a collective decision, based on the dialogue, that will positively impact students by explicitly addressing barriers to their engagement in the classroom. During each workshop, one member of the research team and one undergraduate research assistant observed the interactions among cogen participants and documented these in the form of ethnographic field notes. Another undergraduate research assistant took detailed notes during the workshop to record the content of small and large group discussions, presentations, and questions/responses throughout the workshops. A grounded theory approach was used to analyze the field notes. Additionally, at the conclusion of each workshop, participants completed a Cogen Feedback Survey (CFS) to gather additional information. The CFS were analyzed through open thematic coding, memos, and code frequencies. Our preliminary results demonstrate high levels of engagement from teacher and student participants during the workshops. Students identified that the cogen structure allowed them to participate comfortably, openly, and honestly. Further, students described feeling valued and heard. Students’ ideas and experiences were frequently affirmed, which served as an important step toward dismantling traditional teacher-student boundaries that might otherwise prevent them from sharing freely. Another result from the use of cogens was the shared experience of participants comprehending views from the other group’s perspective in the classroom. Students appreciated the opportunity to learn from teachers about their struggles in keeping students engaged. Teachers appreciated the opportunity to better understand students’ schooling experiences and how these may affirm or deny aspects of their identity. Finally, all participants shared meaningful suggestions and strategies for future workshops and for the collective betterment of the group. Initial findings shared here are important for several reasons. First, our findings suggest that cogens are an effective approach for fostering participants’ commitment to creating the conditions for students’ success in the classroom. Within the context of the workshops, cogens provided teachers, students, and faculty with opportunities to engage in authentic conversations for addressing the recruitment and retention problems in computer science for underrepresented students. These conversations often resulted in the development of tangible pedagogical approaches, examples, metaphors, and other strategies to directly address the recruitment and retention of underrepresented students in computer science. Finally, while we are still developing the CRPG-CSCT, cogens provided us with the opportunity to ensure the voices of teachers and students are well represented in and central to the document. 
    more » « less
  3. Abstract Background The Learning Assistant (LA) model with its subsequent support and training has evidenced significant gains for undergraduate STEM learning and persistence, especially in high-stakes courses like Calculus. Yet, when a swift and unexpected transition occurs from face-to-face to online, remote learning of the LA environment, it is unknown how LAs are able to maintain their motivation (competence, autonomy, and relatedness), adapt to these new challenges, and sustain their student-centered efforts. This study used Self-Determination Theory (SDT) to model theoretical aspects of LAs’ motivations (persistence and performance) both before and after changes were made in delivery of a Calculus II course at Texas Tech University due to COVID-19 interruptions. Results Analysis of weekly written reflections, a focus group session, and a post-course questionnaire of 13 Calculus II LAs throughout Spring semester of 2020 showed that LAs’ reports of competence proportionally decreased when they transitioned online, which was followed by a moderate proportional increase in reports of autonomy (actions they took to adapt to distance instruction) and a dramatic proportional increase in reports of relatedness (to build structures for maintaining communication and building community with undergraduate students). Conclusions Relatedness emerged as the most salient factor from SDT to maintain LA self-determination due to the COVID-19 facilitated interruption to course delivery in a high-stakes undergraduate STEM course. Given that online learning continues during the pandemic and is likely to continue after, this research provides an understanding to how LAs responded to this event and the mounting importance of relatedness when LAs are working with undergraduate STEM learners. Programmatic recommendations are given for enhancing LA preparation including selecting LAs for autonomy and relatedness factors (in addition to competence), modeling mentoring for remote learners, and coaching in best practices for online instruction. 
    more » « less
  4. An effective Learning Assistant (LA) Program provides benefits for both Learning Assistants (LAs) and faculty, in addition to benefits for students. By analyzing LA and faculty reflections, weekly preparation sessions, and interviews with LAs and faculty, we can better understand the partnerships that develop between faculty and their LAs. We leverage a combination of qualitative and quantitative data to investigate the types of LA expertise and skills faculty value and how this affects the formation of these partnerships. The Preparation Session Observation Tool (PSOT), developed from this work, can be used by LAs, LA Program Coordinators, and faculty to reflect on the types of LA partnerships that emerge, and how these partnerships can be used in constructing effective learning environments. We anticipate that this tool can then be used to help LAs, coordinators, and faculty modify their working relationship to develop the type of partnerships that are best for their particular instructional setting. PSOT provides a finer-grained analysis to three broad partnership classifications that exist along a continuum: mentor-mentee, faculty-driven collaboration, and collaborative. 
    more » « less
  5. null (Ed.)
    This NSF EAGER research paper investigates how undergraduate STEM and engineering students’ learning trajectories evolve over time, from 1st to senior year, along a novice to expert spectrum. We borrow the idea of “learning trajectories” from mathematics education that can paint the evolution of students’ knowledge and skills over time over a set of learning experiences. Curricula for undergraduate engineering programs can reflect an intended pathway of knowledge construction within a discipline. We intend our study of individual students within undergraduate STEM and engineering programs can highlight how this may happen in situ and how it may be similar or might differ from a given, prescribed programs of study among disciplines. We use a theoretical framework based in adaptive expertise and design thinking adaptive expertise to develop a design learning continuum further. Envisioned routes through disciplinary undergraduate curricula and student conceptions of their design process are explored through qualitative, semi-structured interviews with undergraduate 1st year and senior year students across STEM, engineering and non-STEM field such as computer science, mechanical engineering, general engineering, mathematics, science, English, and art. We also conduct similar interviews with faculty in these fields who are responsible and knowledgeable for undergraduate programs about their perceived benefits for the structure of their program’s curriculum. Additional information is collected from noticing the organizational and pedagogical structures of the relative undergraduate curriculum. Initial findings/outcomes suggest that traditions to knowledge construction both differ across disciplinary approaches and have similarities across non-obvious disciplinary relationships. Faculty have a firm understanding of how one class chains from one to another; students have less of a field of view for how mindful chunks of knowledge combine together. 
    more » « less