skip to main content


Search for: All records

Award ID contains: 1852944

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background The Learning Assistant (LA) model with its subsequent support and training has evidenced significant gains for undergraduate STEM learning and persistence, especially in high-stakes courses like Calculus. Yet, when a swift and unexpected transition occurs from face-to-face to online, remote learning of the LA environment, it is unknown how LAs are able to maintain their motivation (competence, autonomy, and relatedness), adapt to these new challenges, and sustain their student-centered efforts. This study used Self-Determination Theory (SDT) to model theoretical aspects of LAs’ motivations (persistence and performance) both before and after changes were made in delivery of a Calculus II course at Texas Tech University due to COVID-19 interruptions. Results Analysis of weekly written reflections, a focus group session, and a post-course questionnaire of 13 Calculus II LAs throughout Spring semester of 2020 showed that LAs’ reports of competence proportionally decreased when they transitioned online, which was followed by a moderate proportional increase in reports of autonomy (actions they took to adapt to distance instruction) and a dramatic proportional increase in reports of relatedness (to build structures for maintaining communication and building community with undergraduate students). Conclusions Relatedness emerged as the most salient factor from SDT to maintain LA self-determination due to the COVID-19 facilitated interruption to course delivery in a high-stakes undergraduate STEM course. Given that online learning continues during the pandemic and is likely to continue after, this research provides an understanding to how LAs responded to this event and the mounting importance of relatedness when LAs are working with undergraduate STEM learners. Programmatic recommendations are given for enhancing LA preparation including selecting LAs for autonomy and relatedness factors (in addition to competence), modeling mentoring for remote learners, and coaching in best practices for online instruction. 
    more » « less
  2. In higher education, Learning Assistants (LAs)—a relatively recent evolution grounded in peer mentorship models—are gaining popularity in classrooms as universities strive to meet the needs of undergraduate learners. Unlike Teaching Assistants, LAs are undergraduate students who receive continuous training from faculty mentors in content-area coaching and pedagogical skills. As near-peers, they assist assigned groups of undergraduates (students) during class. Research on LAs suggests that they are significant in mitigating high Drop-Fail-Withdrawal rates of large enrollment undergraduate science, technology, engineering, mathematics, and medical (STEMM) courses. However, there is a dearth of description regarding the learning between LAs and STEMM faculty mentors. This paper reports on perspectives of faculty mentors and their cooperating LAs in regard to their learning relationships during a Calculus II at a research-oriented university during Spring of 2020. Using an exploratory-descriptive qualitative design, faculty (oral responses) and LAs (written responses) reflected on their relationship. Content analysis (coding) resulted in four salient categories (by faculty and LA percentages, respectively) in: Showing Care and Fostering Relationships (47%, 23%); Honing Pedagogical Skills (27%, 36%); Being Prepared for Class and Students (23%, 28%); and Developing Content Knowledge in Calculus (3%, 13%). Benefits of LAs to faculty and ways to commence LA programs at institutions are also discussed. 
    more » « less