skip to main content


Title: Using Role-Plays to Improve Ethical Understanding of Algorithms Among Computing Students
We present a Research-to-Practice paper where we used role-play case studies to improve student understanding of the ethics of algorithms. As the use of algorithmic decision-making continues to grow across areas of society, there is a need to prepare future technology workforce for ethical thinking related. Our work was informed by the situated learning paradigm, and our goal was to improve perspectival thinking among students. Recognizing an issue from multiple perspectives and taking on different perspectives to examine it leads to increased understanding. Drawing on this work, we created and implemented a role-play case study in an undergraduate computing data mining course. The role-play case study focused on the use of algorithms for facial recognition. Data were collected from pre-and post- discussion assignments, and a student survey. Thirty-one students enrolled in the course and completed the ethics module. The data collected in the assignments focused on student's recognition of ethical dilemmas, the change in student's perspective on the case due to creating a collaborative consensus and understanding the complexity of algorithmic decision making. To formally analyze the data, we created a coding schema drawing on the literature and preliminary qualitative analysis of our data. The data were independently coded by multiple coders. The findings indicate that through their participation in collaborative role-play scenarios, students were able to recognize a wide range of issues and offer potential solutions. We discuss the implications of the work. Curriculum material created as part of this work is available as an open education resource.  more » « less
Award ID(s):
1937950
NSF-PAR ID:
10314609
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers of Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Algorithms are a central component of most services we use across a range of domains. These services, platforms, and devices rely on computing and technology professionals – who work as data scientists, programmers, or artificial intelligence (AI) experts – to meet their intended goals. How do we train future professionals to have an ethical mindset in their understanding, design, and implementation of algorithms? This was the question that prompted the use of a role-playing case study, which we designed, implemented, and studied in an undergraduate engineering course. We used the Boeing Max 8 flight disaster as the scenario for this case study as it encapsulates how a software algorithm shapes decision-making in a complex scenario. Theoretically, our work is guided by the situated learning paradigm, specifically the need to learn perspectival thinking for decision-making. The ability to make ethical decisions relies to a large extent on the ability of the decision-maker to take context into account – to understand not just the immediate technical need of the work but also larger implications that might even result from unanticipated consequences. Findings from the evaluation of the role-play scenario show that students reported a higher engagement with case study material and a better understanding of the scenario due to taking on a specific role related to the scenario. Analysis of pre-and post-discussion assignments shows a shift in their perspective of the case, further supporting the overall goal of developing a more situated understanding of ethical decision-making. 
    more » « less
  2. We contend a better way to teach ethics to freshman engineering students would be to address engineering ethics not solely in the abstract of philosophy or moral development, but as situated in the everyday decisions of engineers. Since everyday decisions are not typically a part of university courses, our approach in large lecture classes is to simulate engineering decision-making situations using the role-playing mechanic and narrative structure of a fictional choose-your-own-adventure. Drawing on the contemporary learning theory of situated learning [1], [2], such playful learning may enable instructors to create assignments that induce students to break free of the typical student mindset of finding the “right” answer. Mars: An Ethical Expedition! is an interactive, 12 week, narrative game about the colonization of Mars by various engineering specialists. Students take on the role of a head engineer and are presented with situations that require high-stakes decision-making. Various game mechanics induce students to act as they would on-the-fly, within a real engineering project context, using personal reasoning and richly context-dependent justifications, rather than simply right/wrong answers. Each segment of the game is presented in audio and text that ends with a binary decision that determines what will happen next in the story. Historically, this game had been led by an instructor and played weekly, as a whole-class assignment, completed at the beginning of class. The class votes and the majority option is presented next. In addition to the central decision, there are also follow-up questions at the end of each week that provoke deeper analysis of the situation and reflection on the ethical principles involved. This prototype was initially developed within a learning management system, then supported by the TwineTM game engine, and studied in use in our 2021 NSF EETHICS grant. In 2022-23 the game was redesigned and extended using the GodotTM game engine. In addition to streamlining the gameplay loop and reducing the set-up and data management required by instructors, this redesign supported instructors with an option to allow the game to be student-paced and played by individual students or to keep the instructor-led 12 week whole-class playstyle. Our proposed driving research question is "In what ways does individual student play differ from whole class instructor-led play with regard to learning that ethical behavior is situated?" In the next phase of our ongoing investigation, we plan to further evaluate the use of playful assessment to estimate its validity and reliability in comparison to current best practices of engineering ethics assessment. 
    more » « less
  3. As the field of engineering faces looming societal issues, it becomes particularly important to foster more “holistic engineers” with systems-thinking skills and an understanding of the macro-ethical impacts of their work (Canny and Bielefeldt, 2015) Macro-ethics here refers to the collective social responsibility of engineers as a profession, as opposed to micro-ethics, which concern activities within the profession (Herkert, 2005). However, college students studying engineering in the United States exhibit a decline in concern for public welfare over the course of their education (Cech, 2014) as well as a tendency to orient to micro-ethical issues over macro-ethical issues (Schiff et al, 2020). Scholars attribute these trends to ideologies pervasive in engineering spaces, such as depoliticization of engineering practice, technocracy, and meritocracy (Cech, 2014; Slaton, 2015). While Cech (2014) argues these status quo ideologies in engineering are maintained by a “culture of disengagement” that decreases interest in public welfare, Radoff et al. (2022) find indications that additional factors contribute to engaged students’ reproduction of such ideologies. They find, for example, instances of students in reproducing dehumanizing narratives regarding low-income communities, despite their enrollment in a voluntary program premised on cultivating socially responsible STEM professionals. This finding suggests that even students who remain “engaged” to some degree can reproduce status quo ideologies which Cech (2014) attributes to disengagement. One explanation as to why a macro-ethically “engaged” student may fail to attend to the social aspects of design follows a deficit narrative: a lack of knowledge or ability. We see this assumption in comparisons of students’ and experts’ design processes, where the areas in which students behave differently than experts are interpreted as areas that require additional instruction on how to behave more like the experts (Atman et al., 2008). This presupposition of students’ lacking knowledge or skills, however, backgrounds contextual or interactional factors. Philip et al. (2018) challenges such assumptions in their analysis of a classroom discussion on the ethics of drone warfare, which exemplifies students’ convergence to American nationalism, but with the framing that this convergence is interactionally created, rather than the result of individual students’ stable, dogmatic beliefs. However, because their analysis is limited to the scope of a single class discussion, the extent to which students’ performance is situated in said class remains unclear. In this paper, we attempt to understand the ways in which students reproduce ideologies dominant in engineering, as well as the situated nature of students’ ideological orientations in collaborative work. We consider a case study focus group from Radoff et al. (2022) where students reasoned through a hypothetical design scenario about a grocery store. We show how, despite many opportunities where problematic status-quo narratives are momentarily challenged, the students generally reject the challenges, not by arguing against them, but by positioning them outside the scope of their work. Further, we show how these moments of rejection are tightly coupled with attempts to emulate the multinational technology company Amazon. Finally, we use additional data to illustrate the situatedness of one student’s performance, and theorize the influence of Amazon as a “strange attractor” in this student’s situated reasoning. 
    more » « less
  4. null (Ed.)
    Ethics and social responsibility have frequently been identified as important areas of practice for professional engineers. Thus, measuring engineering ethics and social responsibility is critical to assessing the abilities of engineering students, understanding how those abilities change over time, and exploring the impacts of certain ethical interventions, such as coursework or participation in extracurricular activities. However, measurement of these constructs is difficult, as they are complex and multi-faceted. Much prior research has been carried out to develop and assess ethical interventions in engineering education, but the findings have been mixed, in part because of these measurement challenges. To address this variation in prior work, we have designed and carried out a five year, longitudinal, mixed-methods study to explore students’ perceptions of ethics and social responsibility. This study relies on both repeated use of quantitative measures related to ethics and repeated qualitative interviews to explore how students’ perceptions of these issues change across time, between institutions, and in response to participation in certain experiences. This paper focuses on the thematic analysis and preliminary results of the 33 pairs of interviews that were gathered from participants at three different universities in Year 1 and Year 4 of their undergraduate studies. Given the multifaceted and complex nature of ethics, measuring and assessing how students’ perceive its various aspects (e.g. those related to ethical climate, moral awareness, moral disengagement etc.) has proven challenging. Furthermore, investigating how students’ perceptions of these concepts vary over time adds another layer of complexity for analyzing our longitudinal data. For example, a student might show increased understanding in one aspect of ethics over time and consistency in another, making it difficult to identify patterns or the impacts of specific influences. Due to this large variation in student experiences and perspectives, we used single case analysis to analyze the longitudinal interviews of a single participant, Corvin. From this analysis, three themes emerged in the student's responses: a shift in his views of engineering ethics and social responsibility from idealism to pragmatism; an adjustment in how he thinks engineers should balance their responsibilities to the public and to their employers; and the characteristics he identifies for ethical engineers. This paper will be beneficial for engineering educators and researchers who are interested in measuring and developing ethical capabilities among engineering students. 
    more » « less
  5. This work-in-progress paper presents preliminary findings on how teaching engineering ethics is justified by academic administrators and policymakers, drawing from data collected in a multi-institution collaborative project called “The Distributed System of Governance in Engineering Education”. The project seeks to understand the practice of engineering education reform using data collected from a larger number of oral interviews at a variety of academic institutions and other organizations in engineering education. Investigations of effective strategies for the ethical development of engineering students have been pursued extensively in engineering education research. Canvassing this literature reveals not only diverse approaches and conceptions of engineering ethics, but also a diverse set of rationales and contexts for justifying the development and implementation of engineering ethics coursework and programs. It is also evident that the students’ ethical development is shaped by how the subject is delivered, e.g., the use of case studies or “best practices”, as well as the underlying reasons given to them about why ethics is taught. Institutions send signals to their students, even without intending to, about the importance of engineering ethics to their professional identity through their choice in how and why they address this matter. Our initial analysis of interview data from over a hundred subjects from more than twenty universities demonstrates the diverse ways in which ethics education is justified. The most common reason offered are satisfying ABET accreditation requirements and complying with the recommendations of a disciplinary professional association (e.g., ASME or ASCE). Resistance to notions such as professional judgment, and the absence of any substantial reference to engineering ethics in general conversations about educational decision making and governance are other initial findings from our work. 
    more » « less