skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lysine-Dependent Entropy Effects in the B. subtilis Lysine Riboswitch: Insights from Single-Molecule Thermodynamic Studies
Award ID(s):
2053117 1665271 1734006
PAR ID:
10314721
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Journal of Physical Chemistry B
Volume:
126
Issue:
1
ISSN:
1520-6106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The syntheses are reported of Nϵ‐(2,2,2‐trifluoroethyl)‐D,L‐lysine (tFK) and Nζ‐(2,2,2‐trifluoroethyl)‐D,L‐homolysine (tFK+1) from amino alcohols HO−(CH2)n−NH2. The syntheses involve reductive amination, Appel bromination, and the stereoselective bond formation between Cα of the amino acid and the fluorinated alkyl chain in the Schöllkopf bislactim amino acid synthesis. The methyl esters of the fluorinated amino acids are the relevant substrates for oligopeptide synthesis. With theR‐Schöllkopf reagent, we stereoselectively generated methyl Nϵ‐boc‐Nϵ‐(2,2,2‐trifluoroethyl)‐L‐lysinate and methyl Nζ‐boc‐Nζ‐(2,2,2‐trifluoroethyl)‐L‐homolysinate. Products and intermediates were characterized by 1H NMR, 13C NMR, COSY, HSQC, and LCMS. A variety of N‐functionality may be introduced by reacting hemiacetals with different appendages. This fluorine modification reduces the sidechain N‐basicity by combined ‐I effect of the three fluorines. This effect increases the [amine]/[ammonium ion] ratio of the sidechain amine in lysine to facilitate carbamylation at lower pH conditions. 
    more » « less
  2. ABSTRACT The broadly conserved ParB protein performs crucial functions in bacterial chromosome segregation and replication regulation. The cellular function of ParB requires it to dimerize, recognizeparSDNA sequences, clamp on DNA, then slide to adjacent sequences through nonspecific DNA binding. How ParB coordinates nonspecific DNA binding and sliding remains elusive. Here, we combine multiplein vitrobiophysical and computational tools andin vivoapproaches to address this question. We found that the five conserved lysine residues in the C-terminal domain of ParB play distinct roles in proper positioning and sliding on DNA, and their integrity is crucial for ParB’sin vivofunctions. Many proteins with diverse cellular activities need to move on DNA while loosely bound. Our findings reveal the detailed molecular mechanism by which multiple flexible basic residues enable DNA binding proteins to efficiently slide along DNA. 
    more » « less