skip to main content

Title: Evidence for differing trajectories of songs in urban and rural populations
Abstract Learned traits, such as foraging strategies and communication signals, can change over time via cultural evolution. Using historical recordings, we investigate the cultural evolution of birdsong over nearly a 50-year period. Specifically, we examine the parts of white-crowned sparrow (Zonotrichia leucophrys nuttalli) songs used for mate attraction and territorial defense. We compared historical (early 1970s) recordings with contemporary (mid-2010s) recordings from populations within and near San Francisco, CA and assessed the vocal performance of these songs. Because birds exposed to anthropogenic noise tend to sing at higher minimum frequencies with narrower frequency bandwidths, potentially reducing one measure of song performance, we hypothesized that other song features, such as syllable complexity, might be exaggerated, as an alternative means to display performance capabilities. We found that vocal performance increased between historical and contemporary songs, with a larger effect size for urban songs, and that syllable complexity, measured as the number of frequency modulations per syllable, was historically low for urban males but increased significantly in urban songs. We interpret these results as evidence for males increasing song complexity and trilled performance over time in urban habitats, despite performance constraints from urban noise, and suggest a new line of inquiry into how environments alter vocal performance over time.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Candolin, Ulrika
Date Published:
Journal Name:
Behavioral Ecology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human activity around the globe is a growing source of selection pressure on animal behavior and communication systems. Some animals can modify their vocalizations to avoid masking from anthropogenic noise. However, such modifications can also affect the salience of these vocalizations in functional contexts such as competition and mate choice. Such is the case in the well-studied Nuttall's white-crowned sparrow ( Zonotrichia leucophrys nuttalli ), which lives year-round in both urban San Francisco and nearby rural Point Reyes. A performance feature of this species' song is salient in territorial defense, such that higher performance songs elicit stronger responses in simulated territorial intrusions; but songs with lower performance values transmit better in anthropogenic noise. A key question then is whether vocal performance signals male quality and ability to obtain high quality territories in urban populations. We predicted white-crowned sparrows with higher vocal performance will be in better condition and will tend to hold territories with lower noise levels and more species-preferred landscape features. Because white-crowned sparrows are adapted to coastal scrub habitats, we expect high quality territories to contain lower and less dense canopies, less drought, more greenness, and more flat open ground for foraging. To test our predictions, we recorded songs and measured vocal performance and body condition (scaled mass index and fat score) for a set of urban and rural birds ( N = 93), as well as ambient noise levels on their territories. Remote sensing metrics measured landscape features of territories, such as drought stress (NDWI), greenness (NDVI), mean canopy height, maximum height, leaf area density (understory and canopy), slope, and percent bare ground for a 50 m radius on each male territory. We did not find a correlation between body condition and performance but did find a relationship between noise levels and performance. Further, high performers held territories with lower canopies and less dense vegetation, which are species-preferred landscape features. These findings link together fundamental aspects of sexual selection in that habitat quality and the quality of sexually selected signals appear to be associated: males that have the highest performing songs are defending territories of the highest quality. 
    more » « less
  2. null (Ed.)
    Abstract Many animals learn to produce acoustic signals that are used to attract mates and defend territories. The structure of these signals can be influenced by external features of the environment, including the anthropogenic soundscape. In many sedentary species, habitat features and soundscape appears to influence the cultural evolution of songs, often with tradeoffs for better transmission over sexually selected song structure. However, none have investigated whether noise on the wintering grounds affects song structure, which for long-distance migrants may result in an acoustic ‘mismatch’ when returning to a breeding ground. This study investigates urban noise effects on song structure in a long-distance migrant, Zonotrichia leucophrys gambelii, on the wintering grounds in the Fresno Clovis Metropolitan Area and in outlying non-urban areas. Songs and background noise levels were recorded concurrently, and song measurements of frequency and duration were examined differences across noise levels and habitats . We found that the buzz and trill decrease in bandwidth in the presence of noise. The length of the whistle and buzz portion of the song also tends to decreases with noise in urban habitats. This trend toward short, pure tones in noisy areas may transmit better in noisy urban winter habitats, but may not be adaptive on quieter breeding grounds. We suggest that future studies should consider whether winter auditory feedback and song learning environments have consequences for song crystallization and breeding success for long-distance migrants. 
    more » « less
  3. Abstract

    Birdsong is a longstanding model system for studying evolution and biodiversity. Here, we collected and analyzed high quality song recordings from seven species in the familyEstrildidae. We measured the acoustic features of syllables and then used dimensionality reduction and machine learning classifiers to identify features that accurately assigned syllables to species. Species differences were captured by the first 3 principal components, corresponding to basic frequency, power distribution, and spectrotemporal features. We then identified the measured features underlying classification accuracy. We found that fundamental frequency, mean frequency, spectral flatness, and syllable duration were the most informative features for species identification. Next, we tested whether specific acoustic features of species’ songs predicted phylogenetic distance. We found significant phylogenetic signal in syllable frequency features, but not in power distribution or spectrotemporal features. Results suggest that frequency features are more constrained by species’ genetics than are other features, and are the best signal features for identifying species from song recordings. The absence of phylogenetic signal in power distribution and spectrotemporal features suggests that these song features are labile, reflecting learning processes and individual recognition.

    more » « less
  4. Abstract

    Previous work has demonstrated that there is extensive variation in the songs of White-crowned Sparrow (Zonotrichia leucophrys) throughout the species range, including between neighboring (and genetically distinct) subspecies Z. l. nuttalli and Z. l. pugetensis. Using a machine learning approach to bioacoustic analysis, we demonstrate that variation in song is correlated with year of recording (representing cultural drift), geographic distance, and climatic differences, but the response is subspecies- and season-specific. Automated machine learning methods of bird song annotation can process large datasets more efficiently, allowing us to examine 1,913 recordings across ~60 years. We utilize a recently published artificial neural network to automatically annotate White-crowned Sparrow vocalizations. By analyzing differences in syllable usage and composition, we recapitulate the known pattern where Z. l. nuttalli and Z. l. pugetensis have significantly different songs. Our results are consistent with the interpretation that these differences are caused by the changes in characteristics of syllables in the White-crowned Sparrow repertoire. This supports the hypothesis that the evolution of vocalization behavior is affected by the environment, in addition to population structure.

    more » « less
  5. Abstract Aim

    Anthropogenic noise pollution (ANP) is a globally invasive phenomenon impacting natural systems, but most research has occurred at local scales with few species. We investigated continental‐scale breeding season associations with ANP for 322 bird species to test whether small‐scale predictions related to breeding habitat, migratory behaviour, body mass and vocal traits are consistent at broad spatial extents for an extensive group of species.


    Conterminous USA.

    Time period


    Major taxa studied

    North American breeding birds.


    We calculated, for each species, the association between the breeding season and ANP, using spatially explicit estimates of ANP from the National Park Service and weekly estimates of probabilities of occurrence based on observations from the eBird citizen‐science database. We evaluated how the association of the breeding season for each species with ANP was related to expectations based on size, migratory behaviour and breeding habitat. For a subset of species, we used vocal trait data for song duration, pitch and complexity to evaluate hypotheses from the birdsong literature related to habitat complexity and sensitivity to ANP.


    Species that breed predominantly in anthropogenic environments were associated with twice the level of ANP (~7.4 dB) as species breeding in forested habitats (~3.2 dB). However, we did not find evidence to suggest that birds with higher‐pitched songs are more likely to be found in areas with higher levels of ANP. Residents and migratory species did not differ in associations with ANP, but songs were less complex among forest‐breeding species than non‐forest‐breeding species and increased in complexity with increasing ANP.

    Main conclusions

    Anthropogenic noise pollution is an important factor associated with breeding distributions of bird species in North America. Vocal traits could be useful to understand factors that affect sensitivity to ANP and to predict the potential impact of ANP, although future studies should aim to understand how and why patterns differ across spatial scales.

    more » « less