skip to main content

Title: Observed Deep Cyclonic Eddies around Southern Greenland
Abstract Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation ( 𝜁 / f > 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface (700-1000 dbar), where maximum azimuthal velocities are ~30 cm/s at radii of ~10 km, with rotational periods of 2-3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm/s) and longer rotational periods of about one week. Within the mid-depth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its core and cold, fresh anomalies in the overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated more » with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary-interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region. « less
; ; ; ; ;
Award ID(s):
1948505 1756361
Publication Date:
Journal Name:
Journal of Physical Oceanography
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 mid-depth intensified cyclones were identified that passed the array near the 2000 m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm/s, and a core propagation velocity of 27 cm/s. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m thick lens of dense water at the bottom of the water column, and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey eastmore »of Cape Farewell, conducted in summer 2020, captured two of these features which shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.« less
  2. Abstract. Heat fluxes steered by mesoscale eddies may be a significant, but still notquantified, source of heat to the surface mixed layer and sea ice cover inthe Arctic Ocean, as well as a source of nutrients for enhancing seasonalproductivity in the near-surface layers. Here we use 4 years (2007–2011)of velocity and hydrography records from a moored profiler over the LaptevSea slope and 15 months (2008–2009) of acoustic Doppler current profilerdata from a nearby mooring to investigate the structure and dynamics ofeddies at the continental margin of the eastern Eurasian Basin. Typical eddyscales are radii of the order of 10 km, heights of 600 m, andmaximum velocities of ∼0.1 m s−1. Eddies areapproximately equally divided between cyclonic and anticyclonicpolarizations, contrary to prior observations from the deep basins and alongthe Lomonosov Ridge. Eddies are present in the mooring records about 20 %–25 % of the time,taking about 1 week to pass through the mooring at anaverage frequency of about one eddy per month. We found that the eddies observed are formed in two distinct regions – near FramStrait, where the western branch of Atlantic Water (AW) enters the ArcticOcean, and near Severnaya Zemlya, where the Fram Strait and Barents Seabranches of the AW inflow merge. These eddies, embedded in the ArcticCircumpolarmore »Boundary Current, carry anomalous water properties along theeastern Arctic continental slope. The enhanced diapycnal mixing that wefound within EB eddies suggests a potentially important role for eddies inthe vertical redistribution of heat in the Arctic Ocean interior.« less
  3. Abstract The mean North Atlantic Deep Water (NADW, 1000 < z < 5000 m) circulation and deep western boundary current (DWBC) variability offshore of Abaco, Bahamas, at 26.5°N are investigated from nearly two decades of velocity and hydrographic observations, and outputs from a 30-yr-long eddy-resolving global simulation. Observations at 26.5°N and Argo-derived geostrophic velocities show the presence of a mean Abaco Gyre spanning the NADW layer, consisting of a closed cyclonic circulation between approximately 24° and 30°N and 72° and 77°W. The southward-flowing portion of this gyre (the DWBC) is constrained to within ~150 km of the western boundary with a mean transport of ~30 Sv (1 Sv ≡ 10 6 m 3 s −1 ). Offshore of the DWBC, the data show a consistent northward recirculation with net transports varying from 6.5 to 16 Sv. Current meter records spanning 2008–17 supported by the numerical simulation indicate that the DWBC transport variability is dominated by two distinct types of fluctuations: 1) periods of 250–280 days that occur regularly throughout the time series and 2) energetic oscillations with periods between 400 and 700 days that occur sporadically every 5–6 years and force the DWBC to meander far offshore for several months.more »The shorter-period variations are related to DWBC meandering caused by eddies propagating southward along the continental slope at 24°–30°N, while the longer-period oscillations appear to be related to large anticyclonic eddies that slowly propagate northwestward counter to the DWBC flow between ~20° and 26.5°N. Observational and theoretical evidence suggest that these two types of variability might be generated, respectively, by DWBC instability processes and Rossby waves reflecting from the western boundary.« less
  4. Abstract ‘Horizontal convection’ (HC) is the generic name for the flow resulting from a buoyancy variation imposed along a horizontal boundary of a fluid. We study the effects of rotation on three-dimensional HC numerically in two stages: first, when baroclinic instability is suppressed and, second, when it ensues and baroclinic eddies are formed. We concentrate on changes to the thickness of the near-surface boundary layer, the stratification at depth, the overturning circulation and the flow energetics during each of these stages. Our results show that, for moderate flux Rayleigh numbers ( $O(1{0}^{11} )$ ), rapid rotation greatly alters the steady-state solution of HC. When the flow is constrained to be uniform in the transverse direction, rapidly rotating solutions do not support a boundary layer, exhibit weaker overturning circulation and greater stratification at all depths. In this case, diffusion is the dominant mechanism for lateral buoyancy flux and the consequent buildup of available potential energy leads to baroclinically unstable solutions. When these rapidly rotating flows are perturbed, baroclinic instability develops and baroclinic eddies dominate both the lateral and vertical buoyancy fluxes. The resulting statistically steady solution supports a boundary layer, larger values of deep stratification and multiple overturning cells compared withmore »non-rotating HC. A transformed Eulerian-mean approach shows that the residual circulation is dominated by the quasi-geostrophic eddy streamfunction and that the eddy buoyancy flux has a non-negligible interior diabatic component. The kinetic and available potential energies are greater than in the non-rotating case and the mixing efficiency drops from ${\sim }0. 7$ to ${\sim }0. 17$ . The eddies play an important role in the formation of the thermal boundary layer and, together with the negatively buoyant plume, help establish deep stratification. These baroclinically active solutions have characteristics of geostrophic turbulence.« less
  5. Abstract The southward-flowing deep limb of the Atlantic meridional overturning circulation is composed of both the deep western boundary current (DWBC) and interior pathways. The latter are fed by “leakiness” from the DWBC in the Newfoundland Basin. However, the cause of this leakiness has not yet been explored mechanistically. Here the statistics and dynamics of the DWBC leakiness in the Newfoundland Basin are explored using two float datasets and a high-resolution numerical model. The float leakiness around Flemish Cap is found to be concentrated in several areas (hot spots) that are collocated with bathymetric curvature and steepening. Numerical particle advection experiments reveal that the Lagrangian mean velocity is offshore at these hot spots, while Lagrangian variability is minimal locally. Furthermore, model Eulerian mean streamlines separate from the DWBC to the interior at the leakiness hot spots. This suggests that the leakiness of Lagrangian particles is primarily accomplished by an Eulerian mean flow across isobaths, though eddies serve to transfer around 50% of the Lagrangian particles to the leakiness hot spots via chaotic advection, and rectified eddy transport accounts for around 50% of the offshore flow along the southern face of Flemish Cap. Analysis of the model’s energy and potential vorticitymore »budgets suggests that the flow is baroclinically unstable after separation, but that the resulting eddies induce modest modifications of the mean potential vorticity along streamlines. These results suggest that mean uncompensated leakiness occurs mostly through inertial separation, for which a scaling analysis is presented. Implications for leakiness of other major boundary current systems are discussed.« less