skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cyclonic eddies in the West Greenland Boundary Current System
Abstract The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 mid-depth intensified cyclones were identified that passed the array near the 2000 m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm/s, and a core propagation velocity of 27 cm/s. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m thick lens of dense water at the bottom of the water column, and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey east of Cape Farewell, conducted in summer 2020, captured two of these features which shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.  more » « less
Award ID(s):
1822334 1558742 1948505 1756272 1756361 2038481
PAR ID:
10285457
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
ISSN:
0022-3670
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f> 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region. 
    more » « less
  2. null (Ed.)
    Abstract The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 10 6 m 3 s −1 ), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea. 
    more » « less
  3. null (Ed.)
    Export from the Arctic and meltwater from the Greenland Ice Sheet together form a southward-flowing coastal current along the East Greenland shelf. This current transports enough fresh water to substantially alter the large-scale circulation of the North Atlantic, yet the coastal current’s origin and fate are poorly known due to our lack of knowledge concerning its north-south connectivity. Here, we demonstrate how the current negotiates the complex topography of Denmark Strait using in situ data and output from an ocean circulation model. We determine that the coastal current north of the strait supplies half of the transport to the coastal current south of the strait, while the other half is sourced from offshore via the shelfbreak jet, with little input from the Greenland Ice Sheet. These results indicate that there is a continuous pathway for Arctic-sourced fresh water along the entire East Greenland shelf from Fram Strait to Cape Farewell. 
    more » « less
  4. Abstract The Deep Western Boundary Current (DWBC) – the primary component of the lower limb of the Atlantic Meridional Overturning Circulation – flows along the eastern flank of Greenland from a combination of Denmark Strait Overflow Water and Iceland Scotland Overflow Water. The Overturning in the Subpolar North Atlantic Program (OSNAP) has continuously measured the DWBC since 2014 using current meters, temperature/salinity sensors, and acoustic doppler current profilers. This mooring array located near Cape Farewell also incorporates data from the Ocean Observatories Initiative’s Global Irminger Sea Array to create the longest continuous observations of the DWBC closest to where Iceland Scotland Overflow Water and Denmark Strait Overflow water first merge. This study reveals that the DWBC has decreased by 26% over the first six years of OSNAP observations primarily due to a thinning of the traditionally defined DWBC layer (σθ > 27.8 kg m-3) due to a known freshening signal moving through the subpolar region. Despite this decrease, the Atlantic Meridional Overturning Circulation as calculated by OSNAP has remained relatively steady over the same period. Ultimately, the reason for this difference is due to the methods used to define these two circulations. Finding such notably different trends for two seemingly dependent circulations raises the question of how to best define these transports. 
    more » « less
  5. Abstract Arctic‐origin and Greenland meltwaters circulate cyclonically in the boundary current system encircling the Labrador Sea. The ability of this freshwater to penetrate the interior basin has important consequences for dense water formation and the lower limb of the Atlantic Meridional Overturning Circulation. However, the precise mechanisms by which the freshwater is transported offshore, and the magnitude of this flux, remain uncertain. Here, we investigate wind‐driven upwelling northwest of Cape Farewell using 4 years of high‐resolution data from the Overturning in the Subpolar North Atlantic Program west Greenland mooring array, deployed from September 2014–2018, along with Argo, shipboard, and atmospheric reanalysis data. A total of 49 upwelling events were identified corresponding to enhanced northwesterly winds, followed by reduced along‐stream flow of the boundary current and anomalously dense water present on the outer shelf. The events occur during the development stage of forward Greenland tip jets. During the storms, a cross‐stream Ekman cell develops that transports freshwater offshore in the surface layer and warm, saline, Atlantic‐origin waters onshore at depth. The net fluxes of heat and freshwater for a representative storm are computed. Using a one‐dimensional mixing model, it is shown that the freshwater input resulting from the locus of winter storms could significantly limit the wintertime development of the mixed layer and hence the production of Labrador Sea Water in the southeastern part of the basin. 
    more » « less