skip to main content

Title: What controls the deep cycle? Proxies for equatorial turbulence.
Abstract Factors thought to influence deep cycle turbulence in the equatorial Pacific are examined statistically for their predictive capacity using a 13-year moored record that includes microstructure measurements of the turbulent kinetic energy dissipation rate. Wind stress and mean current shear are found to be most predictive of the dissipation rate. Those variables, together with the solar buoyancy flux and the diurnal mixed layer thickness, are combined to make a pair of useful parameterizations. The uncertainty in these predictions is typically 50% greater than the uncertainty in present-day in situ measurements. To illustrate the use of these parameterizations, the record of deep cycle turbulence, measured directly since 2005, is extended back to 1990 based on historical mooring data. The extended record is used to refine our understanding of the seasonal variation of deep cycle turbulence.
Authors:
; ; ; ;
Award ID(s):
1851520
Publication Date:
NSF-PAR ID:
10314811
Journal Name:
Journal of Physical Oceanography
ISSN:
0022-3670
Sponsoring Org:
National Science Foundation
More Like this
  1. Dimensional analysis suggests that the dissipation length scale ( $\ell _{{\it\epsilon}}=u_{\star }^{3}/{\it\epsilon}$ ) is the appropriate scale for the shear-production range of the second-order streamwise structure function in neutrally stratified turbulent shear flows near solid boundaries, including smooth- and rough-wall boundary layers and shear layers above canopies (e.g. crops, forests and cities). These flows have two major characteristics in common: (i) a single velocity scale, i.e. the friction velocity ( $u_{\star }$ ) and (ii) the presence of large eddies that scale with an external length scale much larger than the local integral length scale. No assumptions are made about the localmore »integral scale, which is shown to be proportional to $\ell _{{\it\epsilon}}$ for the scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here ${\it\epsilon}$ is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of energy cascade in the inertial subrange. The scaling yields a log-law dependence of the second-order streamwise structure function on ( $r/\ell _{{\it\epsilon}}$ ), where $r$ is the streamwise spatial separation. This scaling law is confirmed by large-eddy simulation (LES) results in the roughness sublayer above a model canopy, where the imbalance between local production and dissipation of TKE is much greater than in the inertial layer of wall turbulence and the local integral scale is affected by two external length scales. Parameters estimated for the log-law dependence on ( $r/\ell _{{\it\epsilon}}$ ) are in reasonable agreement with those reported for the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the validity of the $\ell _{{\it\epsilon}}$ -scaling is extended to shear flows with a much greater imbalance between production and dissipation, indicating possible universality of the shear-production range in flows near solid boundaries. Secondly, from a modelling perspective, $\ell _{{\it\epsilon}}$ is the appropriate scale to characterize turbulence in shear flows with multiple externally imposed length scales.« less
  2. We examine how Eulerian statistics of wave breaking and associated turbulence dissipation rates in a field of intermittent events compare with those obtained from sparse Lagrangian sampling by surface following drifters. We use a polydisperse two-fluid model with large-eddy simulation (LES) resolution and volume-of-fluid surface reconstruction (VOF) to simulate the generation and evolution of turbulence and bubbles beneath short-crested wave breaking events in deep water. Bubble contributions to dissipation and momentum transfer between the water and air phases are considered. Eulerian statistics are obtained from the numerical results, which are available on a fixed grid. Next, we sample the LES/VOFmore »model results with a large number of virtual surface-following drifters that are initially distributed in the numerical domain, regularly or irregularly, before each breaking event. Time-averaged Lagrangian statistics are obtained using the time series sampled by the virtual drifters. We show that convergence of statistics occurs for signals that have minimum length of approximately 1000–3000 wave periods with randomly spaced observations in time and space relative to three-dimensional breaking events. We further show important effects of (i) extent of measurements over depth and (ii) obscuration of velocity measurements due to entrained bubbles, which are the two typical challenges in most of the available in situ observations of upper ocean wave breaking turbulence. An empirical correction factor is developed and applied to the previous observations of Thomson et al. Applying the new correction factor to the observations noticeably improves the inferred energy balance of wind input rates and turbulence dissipation rates. Finally, both our simulation results and the corrected observations suggested that the total wave breaking dissipation rates have a nearly linear relation with active whitecap coverage.

    « less
  3. Abstract The turbulent energy dissipation rate in the ocean can be measured by using rapidly sampling microstructure shear probes, or by applying a finescale parameterization to coarser-resolution density and/or shear profiles. The two techniques require measurements that are on different spatiotemporal scales and generate dissipation rate estimates that also differ in spatiotemporal scale. Since the distribution of the measured energy dissipation rate is closer to lognormal than normal and fluctuates with the strength of the turbulence, averaging the two approaches on equivalent spatiotemporal scales is critical for accurately comparing the two methods. Here, microstructure data from the 1997 Brazil Basinmore »Tracer Release Experiment (BBTRE) is used to demonstrate that comparing averages of the dissipation rate on different spatiotemporal scales can generate spurious discrepancies of up to a factor of order 10 in regions of strong turbulence and smaller biases of up to a factor of 2 in the presence of weaker turbulence.« less
  4. Abstract Mangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generatesmore »a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale). Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines.« less
  5. Abstract

    Thorpe analysis has been used to study turbulence in the atmosphere and ocean. It is clear that Thorpe analysis applied to individual soundings cannot be expected to give quantitatively reliable measurements of turbulence parameters because of the instantaneous nature of the measurement. A critical aspect of this analysis is the assumption of the linear relationship C = LO/LT between the Thorpe scale LT, derived from the sounding measurements, and the Ozmidov scale LO. It is the determination of LO that enables determination of the dissipation rate of turbulence kinetic energy ε. Single atmospheric and oceanic soundings cannot indicate eithermore »the source of turbulence or the stage of its evolution; different values of C are expected for different turbulence sources and stages of the turbulence evolution and thus cannot be expected to yield quantitatively reliable turbulence parameters from individual profiles. The variation of C with the stage of turbulence evolution is illustrated for direct numerical simulation (DNS) results for gravity wave breaking. Results from a DNS model of multiscale initiation and evolution of turbulence with a Reynolds number Re (which is defined using the vertical wavelength of the primary gravity wave and background buoyancy period as length and time scales, respectively) of 100 000 are sampled as in sounding of the atmosphere and ocean, and various averaging of the sounding results indicates a convergence to a well-defined value of C, indicating that applying Thorpe analysis to atmospheric or oceanic soundings and averaging over a number of profiles gives more reliable turbulence determinations. The same averaging study is also carried out when the DNS-modeled turbulence is dominated by turbulence growing from the initial instabilities, when the turbulence is fully developed, when the modeled turbulence is decaying, and when the turbulence is in a still-later decaying stage. These individual cases converge to well defined values of C, but these values of C show a large variation resulting from the different stages of turbulence evolution. This study gives guidance as to the accuracy of Thorpe analysis of turbulence as a function of the number of profiles being averaged. It also suggests that the values of C in different environments likely depend on the dominant turbulence initiation mechanisms and on the Reynolds number of the environment.

    « less