skip to main content


Title: Impact of Immersive Training on Senior Chemical Engineering Students' Prioritization of Process Safety Decision Criteria
Every year new safety features and regulations are employed within the process industry to reduce risks associated with operations. Despite these advancements chemical plants remain hazardous places, and the role of the engineer will always involve risk mitigation through real time decision making. Results from a previous study by Kongsvik et al., 2015 indicated that there were three types of decisions in major chemical plants: strategic decisions, operational decisions, and instantaneous decisions. The study showed the importance for improving upon engineers’ operational and instantaneous choices when tasked with quick solutions in the workforce. In this research study, we dive deeper to understand how senior chemical engineering students’ prioritize components of decision making such as budget, productivity, relationships, safety, and time, and how this prioritization may change as a result of participation in a digital immersive training environment called Contents Under Pressure. More specifically, we seek to address the following two research questions: (1) How do senior chemical engineering students prioritize safety in comparison to criteria such as budget, personal relationships, plant productivity, and time in a process safety context, and (2) How does senior chemical engineering students’ prioritization of decision making criteria (budget, personal relationships, plant productivity, safety, and time) change after exposure to a virtual process safety decision making environment? As part of this study, 187 senior chemical engineering students from three separate institutions completed a pre- and post-reflection survey around their engagement with Contents Under Pressure and asked them to rank their prioritizations of budget, productivity, relationships, safety, and time. Data was analyzed using descriptive statistics, and Friedman and Wilcoxon-sign-rank post hoc analyses were completed to determine any statistical differences between the rankings of decision making factors before and after engagement with Contents Under Pressure. Simulating process safety decision making with interactive educational supports may increase students’ understanding of genuine workplace environments and factors that contribute to process safety, without the real world hazards that result from poor decision making. By understanding how students prioritize these factors, chemical engineering curricula can be adapted to focus on the areas of process safety decision making where students need the largest improvement, thereby better preparing them to enter the engineering workforce.  more » « less
Award ID(s):
1711672
NSF-PAR ID:
10314823
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2021 ASEE Virtual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In response to chemical process incidents, the ABET criteria for chemical engineering programs has expanded to include an emphasis on the understanding of hazards associated with chemical processes. This requirement has oftentimes been met with a focus on system design and requirements. However, experts are coming to recognize that human error and judgements can be contributing factors in serious accidents. Poor judgements are a risk of individuals inaccurately predicting their actions, and engineers are not immune to these risks, especially when they are considering how to make tradeoffs with process safety criteria. Where engineers may believe to be prioritizing safety, their behaviors may demonstrate otherwise, which risks the well-being of others. For example, the Pryor Trust well blowout and Chevron refinery explosion may have both been exacerbated due to engineers inadequately making trade offs between safety and productivity demands. It is possible to minimize poor judgments caused by inaccurate predictions by reconciling self-held beliefs with actions actually taken. The purpose of this paper is to describe a pilot study with five senior level engineering students that aims to facilitate understanding whether they have any gaps between their beliefs and behaviors regarding competing criteria in a process safety context. The project is driven by the following four research questions: 1) What do engineers believe about how they make judgements; 2) How do they behave when actually making judgements; 3) What gap, if any, exists between their beliefs and behavior; and 4) How do they reconcile any gap between their beliefs and behavior? To begin answering these questions, we will interview subjects on their beliefs using a semi-structured interview format. We will then obtain data on subjects’ actual behaviors through a recently developed process safety digital game, Contents Under Pressure. Finally, we will compare the subjects’ responses to similar dilemmas in both contexts to then generate a Gap Profile that provides a visual of differences, if they exist. Subjects will then be asked to reconcile their Gap Profile in a subsequent interview. 
    more » « less
  2. In response to chemical process incidents, the ABET criteria for chemical engineering programs has expanded to include an emphasis on the understanding of hazards associated with chemical processes. This requirement has oftentimes been met with a focus on system design and requirements. However, experts are coming to recognize that human error and judgements can be contributing factors in serious accidents. Poor judgements are a risk of individuals inaccurately predicting their actions, and engineers are not immune to these risks, especially when they are considering how to make tradeoffs with process safety criteria. Where engineers may believe to be prioritizing safety, their behaviors may demonstrate otherwise, which risks the well-being of others. For example, the Pryor Trust well blowout and Chevron refinery explosion may have both been exacerbated due to engineers inadequately making trade offs between safety and productivity demands. It is possible to minimize poor judgments caused by inaccurate predictions by reconciling self-held beliefs with actions actually taken. The purpose of this paper is to describe a pilot study with five senior level engineering students that aims to facilitate understanding whether they have any gaps between their beliefs and behaviors regarding competing criteria in a process safety context. The projectis driven by the following four research questions: 1) What do engineers believe about how they make judgements; 2) How do they behave when actually making judgements; 3) What gap, if any, exists between their beliefs and behavior; and 4) How do they reconcile any gap between their beliefs and behavior? To begin answering these questions, we will interview subjects on their beliefs using a semi-structured interview format. We will then obtain data on subjects’ actual behaviors through a recently developed process safety digital game, Contents Under Pressure. Finally, we will compare the subjects’ responses to similar dilemmas in both contexts to then generate a Gap Profile that provides a visual of differences, if they exist. Subjects will then be asked to reconcile their Gap Profile in a subsequent interview. 
    more » « less
  3. In response to chemical process incidents, the ABET criteria for chemical engineering programs has expanded to include an emphasis on the understanding of hazards associated with chemical processes. This requirement has oftentimes been met with a focus on system design and requirements. However, experts are coming to recognize that human error and judgements can be contributing factors in serious accidents. Poor judgements are a risk of individuals inaccurately predicting their actions, and engineers are not immune to these risks, especially when they are considering how to make tradeoffs with process safety criteria. Where engineers may believe to be prioritizing safety, their behaviors may demonstrate otherwise, which risks the well-being of others. For example, the Pryor Trust well blowout and Chevron refinery explosion may have both been exacerbated due to engineers inadequately making trade offs between safety and productivity demands. It is possible to minimize poor judgments caused by inaccurate predictions by reconciling self-held beliefs with actions actually taken. The purpose of this paper is to describe a pilot study with five senior level engineering students that aims to facilitate understanding whether they have any gaps between their beliefs and behaviors regarding competing criteria in a process safety context. The project is driven by the following four research questions: 1) What do engineers believe about how they make judgements; 2) How do they behave when actually making judgements; 3) What gap, if any, exists between their beliefs and behavior; and 4) How do they reconcile any gap between their beliefs and behavior? To begin answering these questions, we will interview subjects on their beliefs using a semi-structured interview format. We will then obtain data on subjects’ actual behaviors through a recently developed process safety digital game, Contents Under Pressure. Finally, we will compare the subjects’ responses to similar dilemmas in both contexts to then generate a Gap Profile that provides a visual of differences, if they exist. Subjects will then be asked to reconcile their Gap Profile in a subsequent interview. 
    more » « less
  4. In response to chemical process incidents, the ABET criteria for chemical engineering programs has expanded to include an emphasis on the understanding of hazards associated with chemical processes. This requirement has oftentimes been met with a focus on system design and requirements. However, experts are coming to recognize that human error and judgements can be contributing factors in serious accidents. Poor judgements are a risk of individuals inaccurately predicting their actions, and engineers are not immune to these risks, especially when they are considering how to make tradeoffs with process safety criteria. Where engineers may believe to be prioritizing safety, their behaviors may demonstrate otherwise, which risks the well-being of others. For example, the Pryor Trust well blowout and Chevron refinery explosion may have both been exacerbated due to engineers inadequately making trade offs between safety and productivity demands. It is possible to minimize poor judgments caused by inaccurate predictions by reconciling self-held beliefs with actions actually taken. The purpose of this paper is to describe a pilot study with five senior level engineering students that aims to facilitate understanding whether they have any gaps between their beliefs and behaviors regarding competing criteria in a process safety context. The project is driven by the following four research questions: 1) What do engineers believe about how they make judgements; 2) How do they behave when actually making judgements; 3) What gap, if any, exists between their beliefs and behavior; and 4) How do they reconcile any gap between their beliefs and behavior? To begin answering these questions, we will interview subjects on their beliefs using a semi-structured interview format. We will then obtain data on subjects’ actual behaviors through a recently developed process safety digital game, Contents Under Pressure. Finally, we will compare the subjects’ responses to similar dilemmas in both contexts to then generate a Gap Profile that provides a visual of differences, if they exist. Subjects will then be asked to reconcile their Gap Profile in a subsequent interview. 
    more » « less
  5. Process safety has become a critical component of chemical engineering education. However, students may find it difficult to fully understand the ramifications of decisions they make during classroom exercises due to their lack of real world experience. Use of an immersive digital environment where students could role play as chemical engineering employees making process safety decisions could be one method of achieving this goal. Through this experience, students could observe the outcomes of their decisions in a safe, controlled environment without the disastrous real-world consequences that could come from making a mistake. This digital environment could have further features, such as time constraints or interactions with other characters, to make the experience feel more authentic than an in-class discussion or case study. In order to evaluate the efficacy of such a virtual environment, a portion of this work centered around the creation of the Engineering Process Safety Research Instrument (EPSRI). The instrument asks participants to evaluate process safety dilemmas and rank a set of considerations based on how influential they were in their decision-making process. The instrument then classifies each decision based on the stages of Kohlberg’s moral development theory, ranging from pre-conventional (i.e. more self-centered) thinking to post-conventional (i.e. more global) thinking. This instrument will be used to assess how students’ thinking about process safety decisions changes as a result of engaging in the virtual safety decision making environment. This paper will summarize the progress since the project’s start in summer 2017,, highlighting the work completed in development and validation of the EPSRI. This process included content validation, think-aloud studies to improve clarity of the instrument, and factor analysis based on a large scale implementation at multiple universities. The paper will also discuss the development of the minimum viable product digital process safety experience, including establishment of learning outcomes and the mechanics that reinforce those outcomes. By presenting these findings, we intend to spread awareness of the EPSRI, which can evaluate the safety decisions of chemical engineering students while having the potential to launch discussions about safety and ethics in other engineering disciplines. We also hope that these results will provide educators with insights into how to translate educational objectives to elements of a digital learning environment through collaboration with digital media companies. 
    more » « less