skip to main content

This content will become publicly available on July 1, 2022

Title: Impact of Immersive Training on Senior Chemical Engineering Students' Prioritization of Process Safety Decision Criteria
Every year new safety features and regulations are employed within the process industry to reduce risks associated with operations. Despite these advancements chemical plants remain hazardous places, and the role of the engineer will always involve risk mitigation through real time decision making. Results from a previous study by Kongsvik et al., 2015 indicated that there were three types of decisions in major chemical plants: strategic decisions, operational decisions, and instantaneous decisions. The study showed the importance for improving upon engineers’ operational and instantaneous choices when tasked with quick solutions in the workforce. In this research study, we dive deeper to understand how senior chemical engineering students’ prioritize components of decision making such as budget, productivity, relationships, safety, and time, and how this prioritization may change as a result of participation in a digital immersive training environment called Contents Under Pressure. More specifically, we seek to address the following two research questions: (1) How do senior chemical engineering students prioritize safety in comparison to criteria such as budget, personal relationships, plant productivity, and time in a process safety context, and (2) How does senior chemical engineering students’ prioritization of decision making criteria (budget, personal relationships, plant productivity, safety, and time) more » change after exposure to a virtual process safety decision making environment? As part of this study, 187 senior chemical engineering students from three separate institutions completed a pre- and post-reflection survey around their engagement with Contents Under Pressure and asked them to rank their prioritizations of budget, productivity, relationships, safety, and time. Data was analyzed using descriptive statistics, and Friedman and Wilcoxon-sign-rank post hoc analyses were completed to determine any statistical differences between the rankings of decision making factors before and after engagement with Contents Under Pressure. Simulating process safety decision making with interactive educational supports may increase students’ understanding of genuine workplace environments and factors that contribute to process safety, without the real world hazards that result from poor decision making. By understanding how students prioritize these factors, chemical engineering curricula can be adapted to focus on the areas of process safety decision making where students need the largest improvement, thereby better preparing them to enter the engineering workforce. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1711672
Publication Date:
NSF-PAR ID:
10314823
Journal Name:
2021 ASEE Virtual Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. Process safety has become a critical component of chemical engineering education. However, students may find it difficult to fully understand the ramifications of decisions they make during classroom exercises due to their lack of real world experience. Use of an immersive digital environment where students could role play as chemical engineering employees making process safety decisions could be one method of achieving this goal. Through this experience, students could observe the outcomes of their decisions in a safe, controlled environment without the disastrous real-world consequences that could come from making a mistake. This digital environment could have further features, suchmore »as time constraints or interactions with other characters, to make the experience feel more authentic than an in-class discussion or case study. In order to evaluate the efficacy of such a virtual environment, a portion of this work centered around the creation of the Engineering Process Safety Research Instrument (EPSRI). The instrument asks participants to evaluate process safety dilemmas and rank a set of considerations based on how influential they were in their decision-making process. The instrument then classifies each decision based on the stages of Kohlberg’s moral development theory, ranging from pre-conventional (i.e. more self-centered) thinking to post-conventional (i.e. more global) thinking. This instrument will be used to assess how students’ thinking about process safety decisions changes as a result of engaging in the virtual safety decision making environment. This paper will summarize the progress since the project’s start in summer 2017, highlighting the work completed in development and validation of the EPSRI. This process included content validation, think-aloud studies to improve clarity of the instrument, and factor analysis based on a large scale implementation at multiple universities. The paper will also discuss the development of the minimum viable product digital process safety experience, including establishment of learning outcomes and the mechanics that reinforce those outcomes. By presenting these findings, we intend to spread awareness of the EPSRI, which can evaluate the safety decisions of chemical engineering students while having the potential to launch discussions about safety and ethics in other engineering disciplines. We also hope that these results will provide educators with insights into how to translate educational objectives to elements of a digital learning environment through collaboration with digital media companies.« less
  2. Process safety has become a critical component of chemical engineering education. However, students may find it difficult to fully understand the ramifications of decisions they make during classroom exercises due to their lack of real world experience. Use of an immersive digital environment where students could role play as chemical engineering employees making process safety decisions could be one method of achieving this goal. Through this experience, students could observe the outcomes of their decisions in a safe, controlled environment without the disastrous real-world consequences that could come from making a mistake. This digital environment could have further features, suchmore »as time constraints or interactions with other characters, to make the experience feel more authentic than an in-class discussion or case study. In order to evaluate the efficacy of such a virtual environment, a portion of this work centered around the creation of the Engineering Process Safety Research Instrument (EPSRI). The instrument asks participants to evaluate process safety dilemmas and rank a set of considerations based on how influential they were in their decision-making process. The instrument then classifies each decision based on the stages of Kohlberg’s moral development theory, ranging from pre-conventional (i.e. more self-centered) thinking to post-conventional (i.e. more global) thinking. This instrument will be used to assess how students’ thinking about process safety decisions changes as a result of engaging in the virtual safety decision making environment. This paper will summarize the progress since the project’s start in summer 2017,, highlighting the work completed in development and validation of the EPSRI. This process included content validation, think-aloud studies to improve clarity of the instrument, and factor analysis based on a large scale implementation at multiple universities. The paper will also discuss the development of the minimum viable product digital process safety experience, including establishment of learning outcomes and the mechanics that reinforce those outcomes. By presenting these findings, we intend to spread awareness of the EPSRI, which can evaluate the safety decisions of chemical engineering students while having the potential to launch discussions about safety and ethics in other engineering disciplines. We also hope that these results will provide educators with insights into how to translate educational objectives to elements of a digital learning environment through collaboration with digital media companies.« less
  3. Process safety is becoming a greater focus of chemical plant design and operation due to the number of incidents involving dangerous chemical accidents. Since its creation nearly 20 years ago, the Chemical Safety Board (CSB) has investigated 130 safety incidents and provided over 800 safety recommendations to operating chemical facilities. Following a gas well blowout in 2018, the CSB gave a recommendation to the American Petroleum Institute (API) to establish recommended practice on alarm management. Similarly, in 2017, the CSB gave a recommendation to Arkema Inc. to update their emergency response training following a hurricane that caused a fire atmore »one of their manufacturing sites. Many times, CSB-led investigations resulted in new regulations and standards that are enforced by the Occupational Safety and Health Administration (OSHA) or the Environmental Protection Agency (EPA). These critical recommendations positively impact not only the plant workers but also the surrounding community and the environment. While these safety measures enhance industrial safety culture, it is important that process safety also be integrated into university-level engineering curricula to promote safety culture while future engineers are still developing. Integrating process safety into the curriculum prepares students by familiarizing them with the difficult decisions they will be required to make in professional practice. ABET, the engineering program accreditation body, acknowledges the value of early, appropriate training within their program guidelines “Criteria for Chemical Engineering Curriculum” which states that recognition and assessment of the hazards associated with chemical processes must be included in the curriculum for program accreditation. Based on this requirement, many institutions have taken the approach to integrate process safety into their curriculum using video case studies, adding entire courses to cover hazard identification, and including safety lectures in design courses. A common theme missing from these methods is instruction on how to approach, recognize, and navigate decisions within a process safety context; a lack of this situational awareness was noted as a key element in industrial process safety incidents. Understanding how students approach process safety decisions is important for developing teaching methods and curriculum that will better prepare them for professional practice. As part of this study, we will measure how students rank criteria associated with process safety decisions, and how these prioritizations change after exposure to a process safety decision making intervention. Through this work, we hope to determine how process safety curriculum may be improved to help better prepare students for process safety decisions within industry.« less
  4. Two methods of assessing senior chemical engineering student ethical decision making in a process safety context were developed; the case-study-based Engineering Process Safety Reasoning Instrument (EPSRI) and a digital immersive environment entitled Contents Under Pressure. Both interventions had similar ethical and process safety decision prompts, but were presented in different manners; the EPSRI as a traditional electronic survey, and Contents Under Pressure as a digital immersive environment (“game”). 148 chemical engineering seniors at three institutions responded to both interventions and responses were compared. Student responses to the traditionally formatted EPSRI revealed most students applied post-conventional reasoning, which is uncommon formore »students in their age range. This suggests that students are aware of the ethical framing of the instrument, and answer accordingly with the perceived “right” response. Student responses to Contents Under Pressure showed significant differences from the EPSRI, including more typical conventional responses. These results suggest that the authenticity of the digital environment can produce more realistic student responses to ethical and process safety dilemmas. Situating ethical and process safety instruction within this type of educational intervention may allow students to gain insight on their ethical decision making process in a safer, low-risk environment.« less
  5. Process safety is at the heart of operation of many chemical processing companies. However, the Chemical Safety Board (CSB) has still documented over 800 investigations of process safety failures since the year 2000. While not all of these incidents were severe, some did lead to employee injuries or death and environmental harm. As a result, chemical engineering companies are increasingly dedicated to process safety through training programs and detailed vigilance as part of their operations practice. AIChE and OSHA also offer courses in process safety to help support the industry. These efforts illustrate the paramount importance that chemical engineering graduatesmore »have an appreciation and understanding of process safety as they transition from their degree program into industrial positions. Previous studies have shown that despite difficulties due to course load constraints, process safety has been incorporated into chemical engineering curriculum through either the addition of new courses, incorporation of the content within existing classes, or a combination of the two methods. A review performed in Process Safety Progress suggested that a key step for departments moving forward is to perform an assessment of the process safety culture within their institution in order to determine how faculty and students view process safety. An issue with completing this task is the lack of assessment tools that can be used to determine how students are developing their understanding of process safety decision making. This observation led to the development of the Engineering Process Safety Research Instrument (EPSRI). This instrument is modeled after the Defining Issues Test version 2 (DIT2) and the Engineering Ethical Reasoning Instrument (EERI). Similar to these instruments, the EPSRI provides dilemmas, three decisions, and 12 additional considerations that individuals must rate based on their relative importance to their decision making process. The dilemmas developed in the EPSRI are based on case studies and investigations from process safety failures that have occurred in industry to provide a realistic context for the decision making decisions that engineers may be faced with upon employment. The considerations provided after the scenario are derived to reflect pre-conventional, conventional, and post-conventional decision making thinking as described by Kohlberg’s Moral Development Theory. Pre-conventional decision making thinking focuses particularly on what is right/wrong or good/bad from an individual level, whereas post-conventional thinking seeks to determine what is correct from moral and value perspectives at the society level. This WIP paper describes the content validity study conducted while developing the EPSRI. Dilemmas were examined by context experts including professionals in the process industry, chemical engineering departments, and learning sciences field. Content experts reviewed the dilemmas and determined whether they represented accurate examples of process safety decision making that individuals may face in real-world engineering settings. The experts also reviewed the 12 considerations for each dilemma for their accuracy in capturing pre-conventional, conventional and post-conventional thinking. This work represents the first step in the overall instrument validation that will take place over the next academic year.« less