skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prediction of Wind Speed, Potential Wind Power, and the Associated Uncertainties for Offshore Wind Farm Using Deep Learning.
Floating offshore wind turbines hold great potential for future solutions to the growing demand for renewable energy production. Thereafter, the prediction of the offshore wind power generation became critical in locating and designing wind farms and turbines. The purpose of this research is to improve the prediction of the offshore wind power generation by the prediction of local wind speed using a Deep Learning technique. In this paper, the future local wind speed is predicted based on the historical weather data collected from National Oceanic and Atmospheric Administration. Then, the prediction of the wind power generation is performed using the traditional methods using the future wind speed data predicted using Deep Learning. The network layers are designed using both Long Short-Term Memory (LSTM) and Bi-directional LSTM (BLSTM), known to be effective on capturing long-term time-dependency. The selected networks are fine-tuned, trained using a part of the weather data, and tested using the other part of the data. To evaluate the performance of the networks, a parameter study has been performed to find the relationships among: length of the training data, prediction accuracy, and length of the future prediction that is reliable given desired prediction accuracy and the training size.  more » « less
Award ID(s):
2118586
PAR ID:
10314880
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
roceedings of the ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering. ASME 2020 Power Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Floating offshore wind turbines hold great potential for future solutions to the growing demand for renewable energy production. Thereafter, the prediction of the offshore wind power generation became critical in locating and designing wind farms and turbines. The purpose of this research is to improve the prediction of the offshore wind power generation by the prediction of local wind speed using a Deep Learning technique. In this paper, the future local wind speed is predicted based on the historical weather data collected from National Oceanic and Atmospheric Administration. Then, the prediction of the wind power generation is performed using the traditional methods using the future wind speed data predicted using Deep Learning. The network layers are designed using both Long Short-Term Memory (LSTM) and Bi-directional LSTM (BLSTM), known to be effective on capturing long-term time-dependency. The selected networks are fine-tuned, trained using a part of the weather data, and tested using the other part of the data. To evaluate the performance of the networks, a parameter study has been performed to find the relationships among: length of the training data, prediction accuracy, and length of the future prediction that is reliable given desired prediction accuracy and the training size. 
    more » « less
  2. Abstract The U.S. offshore wind industry can expect higher costs due to the lack of domestic experience with offshore wind technology. A key factor of the capital expenditure related to offshore wind farms is the cost of the support structures of offshore wind turbines. Therefore, improvements to the reliability of support structures under ultimate and fatigue loading conditions will help reduce the levelized cost of energy of offshore wind. This study presents a framework that accounts for the wind directionality by assuming a distinct and independent wind speed distribution per each wind direction and investigates its effect on the fatigue life of offshore wind turbine support structures. A monopile support structure in a potential wind site close to a National Oceanic and Atmospheric Administration buoy in the north-eastern US waters is used in this study. Fatigue damage assessment is performed for the normal operational condition of wind turbine, and the results are presented considering both cathodic protection and free corrosion conditions at the mudline level of the monopile. The location and extent of the predicted fatigue damages are found to vary due to accounting for the wind directionality. 
    more » « less
  3. Abstract One‐way nested mesoscale to microscale simulations of an onshore wind farm have been performed nesting the Weather Research and Forecasting (WRF) model and our in‐house high‐resolution large‐eddy simulation code (UTD‐WF). Each simulation contains five nested WRF domains, with the largest domain spanning the north Texas Panhandle region with a 4 km resolution, while the highest resolution (50 m) nest simulates microscale wind fluctuations and turbine wakes within a single wind farm. The finest WRF domain in turn drives the UTD‐WF LES higher‐resolution domain for a subset of six turbines at a resolution of ∼5 m. The wind speed, direction, and boundary layer profiles from WRF are compared against measurements obtained with a met‐tower and a scanning Doppler wind LiDAR located within the wind farm. Additionally, power production obtained from WRF and UTD‐WF are assessed against supervisory control and data acquisition (SCADA) system data. Numerical results agree well with the experimental measurements of the wind speed, direction, and power production of the turbines. UTD‐WF high‐resolution domain improves significantly the agreement of the turbulence intensity at the turbines location compared with that of WRF. Velocity spectra have been computed to assess how the nesting allows resolving a wide range of scales at a reasonable computational cost. A domain sensitivity analysis has been performed. Velocity spectra indicate that placing the inlet too close to the first row of turbines results in an unrealistic peak of energy at the rotational frequency of the turbines. Spectra of the power production of a single turbine and of the cumulative power of the array have been compared with analytical models. 
    more » « less
  4. Abstract This work describes the results from wind tunnel experiments performed to maximize wind plant total power output using wake steering via closed loop yaw angle control. The experimental wind plant consists of nine turbines arranged in two different layouts; both are two dimensional arrays and differ in the positioning of the individual turbines. Two algorithms are implemented to maximize wind plant power: Log‐of‐Power Extremum Seeking Control (LP‐ESC) and Log‐of‐Power Proportional Integral Extremum Seeking Control (LP‐PIESC). These algorithms command the yaw angles of the turbines in the upstream row. The results demonstrate that the algorithms can find the optimal yaw angles that maximize total power output. The LP‐PIESC reached the optimal yaw angles much faster than the LP‐ESC. The sensitivity of the LP‐PIESC to variations in free stream wind speed and initial yaw angles is studied to demonstrate robustness to variations in wind speed and unknown yaw misalignment. 
    more » « less
  5. Icing on the blades of wind turbines during winter seasons causes a reduction in power and revenue losses. The prediction of icing before it occurs has the potential to enable mitigating actions to reduce ice accumulation. This paper presents a framework for the prediction of icing on wind turbines based on Supervisory Control and Data Acquisition (SCADA) data without requiring the installation of any additional icing sensors on the turbines. A Temporal Convolutional Network is considered as the model to predict icing from the SCADA data time series. All aspects of the icing prediction framework are described, including the necessary data preprocessing, the labeling of SCADA data for icing conditions, the selection of informative icing features or variables in SCADA data, and the design of a Temporal Convolutional Network as the prediction model. Two performance metrics to evaluate the prediction outcome are presented. Using SCADA data from an actual wind turbine, the model achieves an average prediction accuracy of 77.6% for future times of up to 48 h. 
    more » « less