skip to main content


Title: Synthesis, Postsynthetic Modifications, and Applications of the First Quinoxaline-Based Covalent Organic Framework
We report a new synthetic protocol for preparing highly ordered two-dimensional nanoporous covalent organic frameworks (2D-COFs) based on a quinoxaline backbone. The quinoxaline framework represents a new type of COF that enables postsynthetic modification by placing two different chemical functionalities within the nanopores including layer-to-layer cross-linking. We also demonstrate that membranes fabricated using this new 2D-COF perform highly selective separations resulting in dramatic performance enhancement post cross-linking.  more » « less
Award ID(s):
1809645
NSF-PAR ID:
10314940
Author(s) / Creator(s):
Date Published:
Journal Name:
ACS applied materials interfaces
Volume:
13
ISSN:
1944-8244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coupling of organic and inorganic chemistry presents a new degree of freedom in nano-engineering of thermo-mechanical properties of cement-based materials. Despite these vast technological benefits, molecular scale cross-linking of calcium-silicate-hydrate (C-S-H) gel with organic molecules still presents a significant challenge. Herein, we report experimental results on sol-gel synthesis, structure and morphology of nanocrystalline C-S-H cross-linked with dipodal organosilanes. These novel organic-inorganic gels have layered turbostratic molecular structure with similarities to C-S-H precipitating in hydrating cement paste. The organic molecules' chain length controls the interlayer spacing, which shows little to no shrinkage upon dehydration up to 105 °C. However, the structure gets distorted in the basal crystallite plane, in which dimer and trimer Si-polyhedra structures condense on a 2D hexagonal Ca-polyhedra layer. Cross-linked C-S-H gels display plate-like morphology with tendency toward stacking into agglomerates at the larger scale. If successfully realized in cement environment, e.g. high concentration seed, such novel organic-inorganic C-S-H gels could potentially provide cement-based matrices with unique properties unmatched by classical inorganic systems. 
    more » « less
  2. Abstract

    Emissive covalent organic frameworks (COFs) have recently emerged as next‐generation porous materials with attractive properties such as tunable topology, porosity, and inherent photoluminescence. Among the different types of COFs, substoichiometric frameworks (so‐called Type III COFs) are especially attractive due to the possibility of not only generating unusual topology and complex pore architectures but also facilitating the introduction of well‐defined functional groups at precise locations for desired functions. Herein, the first example of a highly emissive (PLQY 6.8%) substoichiometric 2D‐COF (COF‐SMU‐1) featuring free uncondensed aldehyde groups is reported. In particular,COF‐SMU‐1features a dual‐pore architecture with an overallbexnet topology, tunable emission in various organic solvents, and distinct colorimetric changes in the presence of water. To gain further insights into its photoluminescence properties, the charge transfer, excimer emission, and excited state exciton dynamics ofCOF‐SMU‐1are investigated using femtosecond transient absorption spectroscopy in different organic solvents. Additionally, highly enhanced atmospheric water‐harvesting properties ofCOF‐SMU‐1are revealed using FT‐IR and water sorption studies.The findings will not only lead to in‐depth understanding of structure–property relationships in emissive COFs but also open new opportunities for designing COFs for potential applications in solid‐state lighting and water harvesting.

     
    more » « less
  3. null (Ed.)
    Understanding the underlying physical mechanisms that govern charge transport in two-dimensional (2D) covalent organic frameworks (COFs) will facilitate the development of novel COF-based devices for optoelectronic and thermoelectric applications. In this context, the low-energy mid-infrared absorption contains valuable information about the structure–property relationships and the extent of intra- and inter-framework “hole” polaron delocalization in doped and undoped polymeric materials. In this study, we provide a quantitative characterization of the intricate interplay between electronic defects, domain sizes, pore volumes, chemical dopants, and three dimensional anisotropic charge migration in 2D COFs. We compare our simulations with recent experiments on doped COF films and establish the correlations between polaron coherence, conductivity, and transport signatures. By obtaining the first quantitative agreement with the measured absorption spectra of iodine doped (aza)triangulene-based COF, we highlight the fundamental differences between the underlying microstructure, spectral signatures, and transport physics of polymers and COFs. Our findings provide conclusive evidence of why iodine doped COFs exhibit lower conductivity compared to doped polythiophenes. Finally, we propose new research directions to address existing limitations and improve charge transport in COFs for applications in functional molecular electronic devices. 
    more » « less
  4. Abstract

    Two covalent organic frameworks consisting of carbazolylene‐ethynylene shape‐persistent macrocycles with azine (MC‐COF‐1) or imine (MC‐COF‐2) linkages were synthesized via imine condensation. The obtained 2D frameworks are fully conjugated which imparts semiconducting properties. In addition, the frameworks showed high porosity with aligned accessible porous channels along the z axis, serving as an ideal platform for post‐synthetic incorporation of I2into the channels to enable electrical conductivity. The resulting MC‐COF‐1 showed an electrical conductivity up to 7.8×10−4 S cm−1at room temperature upon I2doping with the activation energy as low as 0.09 eV. Furthermore, we demonstrated that the electrical properties of both MC‐COFs are switchable between electron‐conducting and insulating states by simply implementing doping‐regenerating cycles. The knowledge gained in this study opens new possibilities for the future development of tunable conductive 2D organic materials.

     
    more » « less
  5. Abstract

    Two covalent organic frameworks consisting of carbazolylene‐ethynylene shape‐persistent macrocycles with azine (MC‐COF‐1) or imine (MC‐COF‐2) linkages were synthesized via imine condensation. The obtained 2D frameworks are fully conjugated which imparts semiconducting properties. In addition, the frameworks showed high porosity with aligned accessible porous channels along the z axis, serving as an ideal platform for post‐synthetic incorporation of I2into the channels to enable electrical conductivity. The resulting MC‐COF‐1 showed an electrical conductivity up to 7.8×10−4 S cm−1at room temperature upon I2doping with the activation energy as low as 0.09 eV. Furthermore, we demonstrated that the electrical properties of both MC‐COFs are switchable between electron‐conducting and insulating states by simply implementing doping‐regenerating cycles. The knowledge gained in this study opens new possibilities for the future development of tunable conductive 2D organic materials.

     
    more » « less