skip to main content

Title: Synthesis, Postsynthetic Modifications, and Applications of the First Quinoxaline-Based Covalent Organic Framework
We report a new synthetic protocol for preparing highly ordered two-dimensional nanoporous covalent organic frameworks (2D-COFs) based on a quinoxaline backbone. The quinoxaline framework represents a new type of COF that enables postsynthetic modification by placing two different chemical functionalities within the nanopores including layer-to-layer cross-linking. We also demonstrate that membranes fabricated using this new 2D-COF perform highly selective separations resulting in dramatic performance enhancement post cross-linking.
Award ID(s):
Publication Date:
Journal Name:
ACS applied materials interfaces
Sponsoring Org:
National Science Foundation
More Like this
  1. Coupling of organic and inorganic chemistry presents a new degree of freedom in nano-engineering of thermo-mechanical properties of cement-based materials. Despite these vast technological benefits, molecular scale cross-linking of calcium-silicate-hydrate (C-S-H) gel with organic molecules still presents a significant challenge. Herein, we report experimental results on sol-gel synthesis, structure and morphology of nanocrystalline C-S-H cross-linked with dipodal organosilanes. These novel organic-inorganic gels have layered turbostratic molecular structure with similarities to C-S-H precipitating in hydrating cement paste. The organic molecules' chain length controls the interlayer spacing, which shows little to no shrinkage upon dehydration up to 105 °C. However, the structuremore »gets distorted in the basal crystallite plane, in which dimer and trimer Si-polyhedra structures condense on a 2D hexagonal Ca-polyhedra layer. Cross-linked C-S-H gels display plate-like morphology with tendency toward stacking into agglomerates at the larger scale. If successfully realized in cement environment, e.g. high concentration seed, such novel organic-inorganic C-S-H gels could potentially provide cement-based matrices with unique properties unmatched by classical inorganic systems.« less
  2. Understanding the underlying physical mechanisms that govern charge transport in two-dimensional (2D) covalent organic frameworks (COFs) will facilitate the development of novel COF-based devices for optoelectronic and thermoelectric applications. In this context, the low-energy mid-infrared absorption contains valuable information about the structure–property relationships and the extent of intra- and inter-framework “hole” polaron delocalization in doped and undoped polymeric materials. In this study, we provide a quantitative characterization of the intricate interplay between electronic defects, domain sizes, pore volumes, chemical dopants, and three dimensional anisotropic charge migration in 2D COFs. We compare our simulations with recent experiments on doped COF filmsmore »and establish the correlations between polaron coherence, conductivity, and transport signatures. By obtaining the first quantitative agreement with the measured absorption spectra of iodine doped (aza)triangulene-based COF, we highlight the fundamental differences between the underlying microstructure, spectral signatures, and transport physics of polymers and COFs. Our findings provide conclusive evidence of why iodine doped COFs exhibit lower conductivity compared to doped polythiophenes. Finally, we propose new research directions to address existing limitations and improve charge transport in COFs for applications in functional molecular electronic devices.« less
  3. Here, we report the high-temperature superlubricity phenomenon accomplished in coatings produced by burnishing powders of antimony trioxide (Sb 2 O 3 ) and magnesium silicate hydroxide coated with carbon (MSH/C) onto the nickel superalloy substrate. The tribological analysis performed in an open-air experimental setup revealed that with the increase of testing temperature, the coefficient of friction (COF) of the coating gradually decreases, finally reaching the superlubricity regime (the COF of 0.008) at 300°C. The analysis of worn surfaces using in-situ Raman spectroscopy suggested the synergistic effect of the inner Sb 2 O 3 adhesion layer and the top MSH/C layer,more »which do not only isolate the substrate from the direct exposure to sliding but also protect it from oxidation. The cross-sectional transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results indicated the tribochemically-activated formation of an amorphous carbon layer on the surface of the coating during sliding. Formation of the film enables the high-temperature macroscale superlubricity behavior of the material system.« less
  4. Abstract. Numerous studies have revealed genetic similarities between Tethyanophiolites and oceanic “proto-arc” sequences formed above nascent subductionzones. The Semail ophiolite (Oman–U.A.E.) in particular can be viewed as ananalogue for this proto-arc crust. Though proto-arc magmatism and themechanisms of subduction initiation are of great interest, insight isdifficult to gain from drilling and limited surface outcrops in marinesettings. In contrast, the 3–5 km thick upper-crustal succession of theSemail ophiolite, which is exposed in an oblique cross section, presents anopportunity to assess the architecture and volumes of different volcanicrocks that form during the proto-arc stage. To determine the distribution ofthe volcanic rocks and tomore »aid exploration for the volcanogenic massivesulfide (VMS) deposits that they host, we have remapped the volcanic unitsof the Semail ophiolite by integrating new field observations, geochemicalanalyses, and geophysical interpretations with pre-existing geological maps.By linking the major-element compositions of the volcanic units to rockmagnetic properties, we were able to use aeromagnetic data to infer theextension of each outcropping unit below sedimentary cover, resulting ina new map showing 2100 km2 of upper-crustal bedrock. Whereas earlier maps distinguished two main volcanostratigraphic units, wehave distinguished four, recording the progression from early spreading-axisbasalts (Geotimes), through axial to off-axial depleted basalts (Lasail), topost-axial tholeiites (Tholeiitic Alley), and finally boninites (BoniniticAlley). Geotimes (“Phase 1”) axial dykes and lavas make up ∼55 vol % of the Semail upper crust, whereas post-axial (“Phase 2”) lavasconstitute the remaining ∼45 vol % and ubiquitously coverthe underlying axial crust. Highly depleted boninitic members of the Lasailunit locally occur within and directly atop the axial sequence, marking anearlier onset of boninitic magmatism than previously known for theophiolite. The vast majority of the Semail boninites, however, belong to theBoninitic Alley unit and occur as discontinuous accumulations up to 2 kmthick at the top of the ophiolite sequence and constitute ∼15 vol % of the upper crust. The new map provides a basis for targetedexploration of the gold-bearing VMS deposits hosted by these boninites. Thethickest boninite accumulations occur in the Fizh block, where magma ascentoccurred along crustal-scale faults that are connected to shear zones in theunderlying mantle rocks, which in turn are associated with economicchromitite deposits. Locating major boninite feeder zones may thus be anindirect means to explore for chromitites in the underlying mantle.« less
  5. We have considered three two-dimensional (2D) π-conjugated polymer network ( i.e. , covalent organic frameworks, COFs) materials based on pyrene, porphyrin, and zinc-porphyrin cores connected via diacetylenic linkers. Their electronic structures, investigated at the density functional theory global-hybrid level, are indicative of valence and conduction bands that have large widths, ranging between 1 and 2 eV. Using a molecular approach to derive the electronic couplings between adjacent core units and the electron-vibration couplings, the three π-conjugated 2D COFs are predicted to have ambipolar charge-transport characteristics with electron and hole mobilities in the range of 65–95 cm 2 V −1 smore »−1 . Such predicted values rank these 2D COFs among the highest-mobility organic semiconductors. In addition, we have synthesized the zinc-porphyrin based 2D COF and carried out structural characterization via powder X-ray diffraction, high-resolution transmission electron microscopy, and surface area analysis, which demonstrates the feasibility of these electroactive networks. Steady-state and flash-photolysis time-resolved microwave conductivity measurements on the zinc-porphyrin COF point to appreciable, broadband photoconductivity while transmission spectral measurements are indicative of extended π-conjugation.« less