skip to main content


Title: Carbazolylene‐Ethynylene Macrocycle based Conductive Covalent Organic Frameworks
Abstract

Two covalent organic frameworks consisting of carbazolylene‐ethynylene shape‐persistent macrocycles with azine (MC‐COF‐1) or imine (MC‐COF‐2) linkages were synthesized via imine condensation. The obtained 2D frameworks are fully conjugated which imparts semiconducting properties. In addition, the frameworks showed high porosity with aligned accessible porous channels along the z axis, serving as an ideal platform for post‐synthetic incorporation of I2into the channels to enable electrical conductivity. The resulting MC‐COF‐1 showed an electrical conductivity up to 7.8×10−4 S cm−1at room temperature upon I2doping with the activation energy as low as 0.09 eV. Furthermore, we demonstrated that the electrical properties of both MC‐COFs are switchable between electron‐conducting and insulating states by simply implementing doping‐regenerating cycles. The knowledge gained in this study opens new possibilities for the future development of tunable conductive 2D organic materials.

 
more » « less
Award ID(s):
2108197
NSF-PAR ID:
10413074
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
22
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two covalent organic frameworks consisting of carbazolylene‐ethynylene shape‐persistent macrocycles with azine (MC‐COF‐1) or imine (MC‐COF‐2) linkages were synthesized via imine condensation. The obtained 2D frameworks are fully conjugated which imparts semiconducting properties. In addition, the frameworks showed high porosity with aligned accessible porous channels along the z axis, serving as an ideal platform for post‐synthetic incorporation of I2into the channels to enable electrical conductivity. The resulting MC‐COF‐1 showed an electrical conductivity up to 7.8×10−4 S cm−1at room temperature upon I2doping with the activation energy as low as 0.09 eV. Furthermore, we demonstrated that the electrical properties of both MC‐COFs are switchable between electron‐conducting and insulating states by simply implementing doping‐regenerating cycles. The knowledge gained in this study opens new possibilities for the future development of tunable conductive 2D organic materials.

     
    more » « less
  2. Abstract

    The emergence of conductive 2D and less commonly 3D coordination polymers (CPs) and metal–organic frameworks (MOFs) promises novel applications in many fields. However, the synthetic parameters for these electronically complex materials are not thoroughly understood. Here we report a new 3D semiconducting CPFe5(C6O6)3, which is a fusion of 2D Fe‐semiquinoid materials and 3D cubicFex(C6O6)ymaterials, by using a different initial redox‐state of the C6O6linker. The material displays high electrical conductivity (0.02 S cm−1), broad electronic transitions, promising thermoelectric behavior (S2σ=7.0×10−9 W m−1 K−2), and strong antiferromagnetic interactions at room temperature. This material illustrates how controlling the oxidation states of redox‐active components in conducting CPs/MOFs can be a “pre‐synthetic” strategy to carefully tune material topologies and properties in contrast to more commonly encountered post‐synthetic modifications.

     
    more » « less
  3. Abstract

    The emergence of conductive 2D and less commonly 3D coordination polymers (CPs) and metal–organic frameworks (MOFs) promises novel applications in many fields. However, the synthetic parameters for these electronically complex materials are not thoroughly understood. Here we report a new 3D semiconducting CPFe5(C6O6)3, which is a fusion of 2D Fe‐semiquinoid materials and 3D cubicFex(C6O6)ymaterials, by using a different initial redox‐state of the C6O6linker. The material displays high electrical conductivity (0.02 S cm−1), broad electronic transitions, promising thermoelectric behavior (S2σ=7.0×10−9 W m−1 K−2), and strong antiferromagnetic interactions at room temperature. This material illustrates how controlling the oxidation states of redox‐active components in conducting CPs/MOFs can be a “pre‐synthetic” strategy to carefully tune material topologies and properties in contrast to more commonly encountered post‐synthetic modifications.

     
    more » « less
  4. Abstract

    Imine‐linked 2D covalent organic frameworks (COFs) form more rapidly than previously reported under Brønsted acid‐catalyzed conditions, showing signs of crystallinity within a few minutes, and maximum crystallinity within hours. These observations contrast with the multiday reaction times typically employed under these conditions. In addition, vacuum activation, which is often used to isolate COF materials significantly erodes the crystallinity and surface area of the several isolated materials, as measured by N2sorption and X‐ray diffraction. This loss of material quality during isolation for many networks has historically obscured otherwise effective polymerization conditions. The influence of the activation procedure is characterized in detail for three COFs, with the commonly used 1,3,5‐tris(4‐aminophenyl)benzene‐terephthaldehyde network (TAPB‐PDA COF), the most prone to pore collapse. When the networks are activated carefully, rapid COF formation is general for all five of the imine‐linked 2D COFs studied, with all exhibiting excellent crystallinity and surface areas, including the highest surface areas reported to date for three materials. Furthermore, to simplify the workup of COF materials, a simple nitrogen flow method provides high‐quality materials without the need for specialized equipment. These insights have important implications for studying and understanding how 2D COFs form.

     
    more » « less
  5. Abstract

    Herein, we report the synthesis of a nitrone‐linked covalent organic framework, COF‐115, by combiningN,N′,N′,N′′′‐(ethene‐1, 1, 2, 2‐tetrayltetrakis(benzene‐4, 1‐diyl))tetrakis(hydroxylamine) and terephthaladehyde via a polycondensation reaction. The formation of the nitrone functionality was confirmed by solid‐state13C multi cross‐polarization magic angle spinning NMR spectroscopy of the13C‐isotope‐labeled COF‐115 and Fourier‐transform infrared spectroscopy. The permanent porosity of COF‐115 was evaluated through low‐pressure N2, CO2, and H2sorption experiments. Water vapor and carbon dioxide sorption analysis of COF‐115 and the isoreticular imine‐linked COF indicated a superior potential ofN‐oxide‐based porous materials for atmospheric water harvesting and CO2capture applications. Density functional theory calculations provided valuable insights into the difference between the adsorption properties of these COFs. Lastly, photoinduced rearrangement of COF‐115 to the associated amide‐linked material was successfully demonstrated.

     
    more » « less