skip to main content


Title: Fabrication of 3D Micro-Blades for the Cutting of Biological Structures in a Microfluidic Guillotine
Micro-blade design is an important factor in the cutting of single cells and other biological structures. This paper describes the fabrication process of three-dimensional (3D) micro-blades for the cutting of single cells in a microfluidic “guillotine” intended for fundamental wound repair and regeneration studies. Our microfluidic guillotine consists of a fixed 3D micro-blade centered in a microchannel to bisect cells flowing through. We show that the Nanoscribe two-photon polymerization direct laser writing system is capable of fabricating complex 3D micro-blade geometries. However, structures made of the Nanoscribe IP-S resin have low adhesion to silicon, and they tend to peel off from the substrate after at most two times of replica molding in poly(dimethylsiloxane) (PDMS). Our work demonstrates that the use of a secondary mold replicates Nanoscribe-printed features faithfully for at least 10 iterations. Finally, we show that complex micro-blade features can generate different degrees of cell wounding and cell survival rates compared with simple blades possessing a vertical cutting edge fabricated with conventional 2.5D photolithography. Our work lays the foundation for future applications in single cell analyses, wound repair and regeneration studies, as well as investigations of the physics of cutting and the interaction between the micro-blade and biological structures.  more » « less
Award ID(s):
1938109
NSF-PAR ID:
10315106
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Micromachines
Volume:
12
Issue:
9
ISSN:
2072-666X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Wound healing is one of the defining features of life and is seen not only in tissues but also within individual cells. Understanding wound response at the single-cell level is critical for determining fundamental cellular functions needed for cell repair and survival. This understanding could also enable the engineering of single-cell wound repair strategies in emerging synthetic cell research. One approach is to examine and adapt self-repair mechanisms from a living system that already demonstrates robust capacity to heal from large wounds. Towards this end, Stentor coeruleus , a single-celled free-living ciliate protozoan, is a unique model because of its robust wound healing capacity. This capacity allows one to perturb the wounding conditions and measure their effect on the repair process without immediately causing cell death, thereby providing a robust platform for probing the self-repair mechanism. Results Here we used a microfluidic guillotine and a fluorescence-based assay to probe the timescales of wound repair and of mechanical modes of wound response in Stentor . We found that Stentor requires ~ 100–1000 s to close bisection wounds, depending on the severity of the wound. This corresponds to a healing rate of ~ 8–80 μm 2 /s, faster than most other single cells reported in the literature. Further, we characterized three distinct mechanical modes of wound response in Stentor : contraction, cytoplasm retrieval, and twisting/pulling. Using chemical perturbations, active cilia were found to be important for only the twisting/pulling mode. Contraction of myonemes, a major contractile fiber in Stentor , was surprisingly not important for the contraction mode and was of low importance for the others. Conclusions While events local to the wound site have been the focus of many single-cell wound repair studies, our results suggest that large-scale mechanical behaviors may be of greater importance to single-cell wound repair than previously thought. The work here advances our understanding of the wound response in Stentor and will lay the foundation for further investigations into the underlying components and molecular mechanisms involved. 
    more » « less
  2. Stentor coeruleus , a single-cell ciliated protozoan, is a model organism for wound healing and regeneration studies. Despite Stentor 's large size (up to 2 mm in extended state), microdissection of Stentor remains challenging. In this work, we describe a hydrodynamic cell splitter, consisting of a microfluidic cross junction, capable of splitting Stentor cells in a non-contact manner at a high throughput of ∼500 cells per minute under continuous operation. Introduction of asymmetry in the flow field at the cross junction leads to asymmetric splitting of the cells to generate cell fragments as small as ∼8.5 times the original cell size. Characterization of cell fragment viability shows reduced 5-day survival as fragment size decreases and as the extent of hydrodynamic stress imposed on the fragments increases. Our results suggest that cell fragment size and composition, as well as mechanical stress, play important roles in the long-term repair of Stentor cells and warrant further investigations. Nevertheless, the hydrodynamic splitter can be useful for studying phenomena immediately after cell splitting, such as the closure of wounds in the plasma membrane which occurs on the order of 100–1000 seconds in Stentor . 
    more » « less
  3. Abstract

    Exposure of a young systemic milieu reveals remarkable rejuvenation effects on aged tissues, including skeletal muscle. Although some candidate factors have been reported, the exact underlying mechanisms of putative rejuvenating factors remain elusive, mainly due to the experimental challenges of using in vivo parabiosis. An in vitro parabiosis system is reported here that integrates young‐ and old‐muscle stem cell vascular niche on a 3D microfluidic platform designed to recapitulate key features of native muscle stem cell microenvironment. This 3D micro‐physiological system enables mechanistic studies of cellular dynamics and molecular interactions within the muscle stem cell niche, especially in response to conditional extrinsic stimuli of local and systemic factors. Using engineered parabiosis system, it is demonstrated that vascular endothelial growth factor signaling from endothelial cells and myotubes synergistically contributes to the rejuvenation of the aged muscle stem cell function. Moreover, with the adjustable on‐chip system, both blood transfusion and parabiosis can be mimicked and the time‐varying effects of antigeronic and progeronic factors can be monitored in a single organ or multiorgan systems. The microfluidic system can be utilized as a complementary in vitro microphysiological model to aid the complex in vivo parabiosis studies.

     
    more » « less
  4. Abstract

    The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix‐derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin‐targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin‐mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin‐targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.

     
    more » « less
  5. Abstract

    Collagen is the major structural protein in myocardium and contributes to tissue strength and integrity, cellular orientation, and cell–cell and cell‐matrix interactions. Significant post‐myocardial infarction related loss of cardiomyocytes and cardiac tissue, and their subsequent replacement with fibrous scar tissue, negatively impacts endogenous tissue repair and regeneration capabilities. To overcome such limitations, tissue engineers are working toward developing a 3D cardiac patch which not only mimics the structural, functional, and biological hierarchy of the native cardiac tissue, but also could deliver autologous stem cells and encourage their homing and differentiation. In this study, we examined the utility of electrospun, randomly‐oriented, type‐I collagen nanofiber (dia= 789 ± 162 nm) mats on the cardiomyogenic differentiation of human bone marrow‐derived mesenchymal stem cells (BM‐MSC) spheroids, in the presence or absence of 10 μM 5‐azacytidine (aza). Results showed that these scaffolds are biocompatible and enable time‐dependent evolution of early (GATA binding protein 4: GATA4), late (cardiac troponin I: cTnI), and mature (myosin heavy chain: MHC) cardiomyogenic markers, with a simultaneous reduction in CD90 (stemness) expression, independent of aza‐treatment. Aza‐exposure improved connexin‐4 expression and sustained sarcomeric α‐actin expression, but provided only transient improvement in cardiac troponin T (cTnT) expression. Cell orientation and alignment significantly improved in these nanofiber scaffolds over time and with aza‐exposure. Although further quantitativein vitroandin vivostudies are needed to establish the clinical applicability of such stem‐cell laden collagen nanofiber mats as cardiac patches for cardiac tissue regeneration, our results underscore the benefits of 3D milieu provided by electrospun collagen nanofiber mats, aza, and spheroids on the survival, cardiac differentiation and maturation of human BM‐MSCs. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3303–3312, 2018.

     
    more » « less