Deep learning (DL) models trained on hydrologic observations can perform extraordinarily well, but they can inherit deficiencies of the training data, such as limited coverage of in situ data or low resolution/accuracy of satellite data. Here we propose a novel multiscale DL scheme learning simultaneously from satellite and in situ data to predict 9 km daily soil moisture (5 cm depth). Based on spatial cross‐validation over sites in the conterminous United States, the multiscale scheme obtained a median correlation of 0.901 and root‐mean‐square error of 0.034 m3/m3. It outperformed the Soil Moisture Active Passive satellite mission's 9 km product, DL models trained on in situ data alone, and land surface models. Our 9 km product showed better accuracy than previous 1 km satellite downscaling products, highlighting limited impacts of improving resolution. Not only is our product useful for planning against floods, droughts, and pests, our scheme is generically applicable to geoscientific domains with data on multiple scales, breaking the confines of individual data sets.
- Award ID(s):
- 1650551
- PAR ID:
- 10315146
- Date Published:
- Journal Name:
- Frontiers in Artificial Intelligence
- Volume:
- 4
- ISSN:
- 2624-8212
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Abstract Soil moisture (SM) and evapotranspiration (ET) are key variables of the terrestrial water cycle with a strong relationship. This study examines remotely sensed soil moisture and evapotranspiration data assimilation (DA) with the aim of improving drought monitoring. Although numerous efforts have gone into assimilating satellite soil moisture observations into land surface models to improve their predictive skills, little attention has been given to the combined use of soil moisture and evapotranspiration to better characterize hydrologic fluxes. In this study, we assimilate two remotely sensed datasets, namely, Soil Moisture Operational Product System (SMOPS) and MODIS evapotranspiration (MODIS16 ET), at 1-km spatial resolution, into the VIC land surface model by means of an evolutionary particle filter method. To achieve this, a fully parallelized framework based on model and domain decomposition using a parallel divide-and-conquer algorithm was implemented. The findings show improvement in soil moisture predictions by multivariate assimilation of both ET and SM as compared to univariate scenarios. In addition, monthly and weekly drought maps are produced using the updated root-zone soil moisture percentiles over the Apalachicola–Chattahoochee–Flint basin in the southeastern United States. The model-based estimates are then compared against the corresponding U.S. Drought Monitor (USDM) archive maps. The results are consistent with the USDM maps during the winter and spring season considering the drought extents; however, the drought severity was found to be slightly higher according to DA method. Comparing different assimilation scenarios showed that ET assimilation results in wetter conditions comparing to open-loop and univariate SM DA. The multivariate DA then combines the effects of the two variables and provides an in-between condition.more » « less
-
The Soil Moisture Active Passive (SMAP) mission measures important soil moisture data globally. SMAP's products might not always perform better than land surface models (LSM) when evaluated against in situ measurements. However, we hypothesize that SMAP presents added value for long-term soil moisture estimation in a data fusion setting as evaluated by in situ data. Here, with the help of a time series deep learning (DL) method, we created a seamlessly extended SMAP data set to test this hypothesis and, importantly, gauge whether such benefits extend to years beyond SMAP's limited lifespan. We first show that the DL model, called long short-term memory (LSTM), can extrapolate SMAP for several years and the results are similar to the training period. We obtained prolongation results with low-performance degradation where SMAP itself matches well with in situ data. Interannual trends of root-zone soil moisture are surprisingly well captured by LSTM. In some cases, LSTM's performance is limited by SMAP, whose main issue appears to be its shallow sensing depth. Despite this limitation, a simple average between LSTM and an LSM Noah frequently outperforms Noah alone. Moreover, Noah combined with LSTM is more skillful than when it is combined with another LSM. Over sparsely instrumented sites, the Noah-LSTM combination shows a stronger edge. Our results verified the value of LSTM-extended SMAP data. Moreover, DL is completely data driven and does not require structural assumptions. As such, it has its unique potential for long-term projections and may be applied synergistically with other model-data integration techniques.more » « less
-
Accurate hydrological modeling is vital to characterizing how the terrestrial water cycle responds to climate change. Pure deep learning (DL) models have shown to outperform process-based ones while remaining difficult to interpret. More recently, differentiable, physics-informed machine learning models with a physical backbone can systematically integrate physical equations and DL, predicting untrained variables and processes with high performance. However, it was unclear if such models are competitive for global-scale applications with a simple backbone. Therefore, we use – for the first time at this scale – differentiable hydrologic models (fullname δHBV-globe1.0-hydroDL and shorthanded δHBV) to simulate the rainfall-runoff processes for 3753 basins around the world. Moreover, we compare the δHBV models to a purely data-driven long short-term memory (LSTM) model to examine their strengths and limitations. Both LSTM and the δHBV models provide competent daily hydrologic simulation capabilities in global basins, with median Kling-Gupta efficiency values close to or higher than 0.7 (and 0.78 with LSTM for a subset of 1675 basins with long-term records), significantly outperforming traditional models. Moreover, regionalized differentiable models demonstrated stronger spatial generalization ability (median KGE 0.64) than a traditional parameter regionalization approach (median KGE 0.46) and even LSTM for ungauged region tests in Europe and South America. Nevertheless, relative to LSTM, the differentiable model was hampered by structural deficiencies for cold or polar regions, and highly arid regions, and basins with significant human impacts. This study also sets the benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.more » « less
-
Abstract The Consistent Artificial Intelligence (AI)-based Soil Moisture (CASM) dataset is a global, consistent, and long-term, remote sensing soil moisture (SM) dataset created using machine learning. It is based on the NASA Soil Moisture Active Passive (SMAP) satellite mission SM data and is aimed at extrapolating SMAP-like quality SM back in time using previous satellite microwave platforms. CASM represents SM in the top soil layer, and it is defined on a global 25 km EASE-2 grid and for 2002–2020 with a 3-day temporal resolution. The seasonal cycle is removed for the neural network training to ensure its skill is targeted at predicting SM extremes. CASM comparison to 367 global
in-situ SM monitoring sites shows a SMAP-like median correlation of 0.66. Additionally, the SM product uncertainty was assessed, and both aleatoric and epistemic uncertainties were estimated and included in the dataset. CASM dataset can be used to study a wide range of hydrological, carbon cycle, and energy processes since only a consistent long-term dataset allows assessing changes in water availability and water stress.