skip to main content


Title: Molten iron in Earth-like exoplanet cores
Earth, the only known habitable planet in the Universe, has a magnetic field that shields organic life-forms from harmful radiation coming from the Sun and beyond. This magnetic field is generated by the churning of molten iron in its outer core. The habitability of exoplanets orbiting other stars could be gleaned through better understanding of their iron cores and magnetic fields ( 1 ). However, extreme pressure and temperature conditions inside exoplanets that are much heavier than Earth may mean that their cores behave differently. On page 202 of this issue, Kraus et al. ( 2 ) used a powerful laser to generate conditions similar to those inside the cores of such “super-Earths” and reveal that even under extreme conditions, molten iron can crystallize similarly to that found at the base of Earth’s outer core.  more » « less
Award ID(s):
1901801
NSF-PAR ID:
10315199
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Science
Volume:
375
Issue:
6577
ISSN:
0036-8075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seismic observations suggest that the uppermost region of Earth’s liquid outer core is buoyant, with slower velocities than the bulk outer core. One possible mechanism for the formation of a stably stratified layer is immiscibility in molten iron alloy systems, which has yet to be demonstrated at core pressures. We find immisci- bility between liquid Fe-Si and Fe-Si-O persisting to at least 140 GPa through a combination of laser-heated diamond-anvil cell experiments and first-principles molecular dynamics simulations. High-pressure immiscibility in the Fe-Si-O system may explain a stratified layer atop the outer core, complicate differentiation and evolution of the deep Earth, and affect the structure and intensity of Earth’s magnetic field. Our results support silicon and oxy- gen as coexisting light elements in the core and suggest that SiO2 does not crystallize out of molten Fe-Si-O at the core-mantle boundary. 
    more » « less
  2. The anomalous nondipolar and nonaxisymmetric magnetic fields of Uranus and Neptune have long challenged conventional views of planetary dynamos. A thin-shell dynamo conjecture captures the observed phenomena but leaves unexplained the fundamental material basis and underlying mechanism. Here we report extensive quantum-mechanical calculations of polymorphism in the hydrogen–oxygen system at the pressures and temperatures of the deep interiors of these ice giant planets (to >600 GPa and 7,000 K). The results reveal the surprising stability of solid and fluid trihydrogen oxide (H 3 O) at these extreme conditions. Fluid H 3 O is metallic and calculated to be stable near the cores of Uranus and Neptune. As a convecting fluid, the material could give rise to the magnetic field consistent with the thin-shell dynamo model proposed for these planets. H 3 O could also be a major component in both solid and superionic forms in other (e.g., nonconvecting) layers. The results thus provide a materials basis for understanding the enigmatic magnetic-field anomalies and other aspects of the interiors of Uranus and Neptune. These findings have direct implications for the internal structure, composition, and dynamos of related exoplanets. 
    more » « less
  3. Abstract

    The presence of light elements in the metallic cores of the Earth, the Moon, and other rocky planetary bodies has been widely proposed. Carbon is among the top candidates in light of its high cosmic abundance, siderophile nature, and ubiquity in iron meteorites. It is, however, still controversial whether carbon‐rich core compositional models can account for the seismic velocity observations within the Earth and lunar cores. Here, we report the density and elasticity of Fe90Ni10‐3 wt.% C and Fe90Ni10‐5 wt.% C liquid alloys using synchrotron‐based X‐ray absorption experiments and first‐principles molecular dynamics simulations. Our results show that alloying of 3 wt.% and 5 wt.% C lowers the density of Fe90Ni10liquid by ∼2.9–3.1% at 2 GPa, and ∼3.4–3.6% at 9 GPa. More intriguingly, our experiments and simulations both demonstrate that the bulk moduli of the Fe‐Ni‐C liquids are similar to or slightly higher than those of Fe‐Ni liquids. Thus, the calculated compressional velocities (vp) of Fe‐Ni‐C liquids are higher than that of pure Fe‐Ni alloy, promoting carbon as a possible candidate to explain the elevatedvpin the Earth's outer core. However, the values and slopes of both density andvpof the studied two Fe‐Ni‐C liquids do not match the outer core seismic models, suggesting that carbon may not be the sole principal light element in Earth's outer core. The highvpof Fe‐Ni‐C liquids does not match the presumptivevpof the lunar outer core well, indicating that carbon is less likely to be its dominant light element.

     
    more » « less
  4. null (Ed.)
    During the formation of terrestrial planets, volatile loss may occur through nebular processing, planetesimal differentiation, and planetary accretion. We investigate iron meteorites as an archive of volatile loss during planetesimal processing. The carbon contents of the parent bodies of magmatic iron meteorites are reconstructed by thermodynamic modeling. Calculated solid/molten alloy partitioning of C increases greatly with liquid S concentration, and inferred parent body C concentrations range from 0.0004 to 0.11 wt%. Parent bodies fall into two compositional clusters characterized by cores with medium and low C/S. Both of these require significant planetesimal degassing, as metamorphic devolatilization on chondrite-like precursors is insufficient to account for their C depletions. Planetesimal core formation models, ranging from closed-system extraction to degassing of a wholly molten body, show that significant open-system silicate melting and volatile loss are required to match medium and low C/S parent body core compositions. Greater depletion in C relative to S is the hallmark of silicate degassing, indicating that parent body core compositions record processes that affect composite silicate/iron planetesimals. Degassing of bare cores stripped of their silicate mantles would deplete S with negligible C loss and could not account for inferred parent body core compositions. Devolatilization during small-body differentiation is thus a key process in shaping the volatile inventory of terrestrial planets derived from planetesimals and planetary embryos. 
    more » « less
  5. SUMMARY

    We present investigations of rapidly rotating convection in a thick spherical shell geometry relevant to planetary cores, comparing results from quasi-geostrophic (QG), 3-D and hybrid QG-3D models. The 170 reported calculations span Ekman numbers, Ek, between 10−4 and 10−10, Rayleigh numbers, Ra, between 2 and 150 times supercritical and Prandtl numbers, Pr, between 10 and 10−2. The default boundary conditions are no-slip at both the ICB and the CMB for the velocity field, with fixed temperatures at the ICB and the CMB. Cases driven by both homogeneous and inhomogeneous CMB heat flux patterns are also explored, the latter including lateral variations, as measured by Q*, the peak-to-peak amplitude of the pattern divided by its mean, taking values up to 5. The QG model is based on the open-source pizza code. We extend this in a hybrid approach to include the temperature field on a 3-D grid. In general, we find convection is dominated by zonal jets at mid-depths in the shell, with thermal Rossby waves prominent close to the outer boundary when the driving is weaker. For the thick spherical shell geometry studied here the hybrid method is best suited for studying convection at modest forcing, $Ra \le 10 \, Ra_c$ when Pr = 1, and departs from the 3-D model results at higher Ra, displaying systematically lower heat transport characterized by lower Nusselt and Reynolds numbers. We find that the lack of equatorially-antisymmetric motions and z-correlations between temperature and velocity in the buoyancy force contributes to the weaker flows in the hybrid formulation. On the other hand, the QG models yield broadly similar results to the 3-D models, for the specific aspect ratio and range of Rayleigh numbers explored here. We cannot point to major disagreements between these two data sets at Pr ≥ 0.1, with the QG model effectively more strongly driven than the hybrid case due to its cylindrically averaged thermal boundary conditions. When Pr is decreased, the range of agreement between the hybrid and 3-D models expands, for example up to $Ra \le 15 \, Ra_c$ at Pr = 0.1, indicating the hybrid method may be better suited to study convection in the low Pr regime. We thus observe a transition between two regimes: (i) at Pr ≥ 0.1 the QG and 3-D models agree in the studied range of Ra/Rac while the hybrid model fails when $Ra\gt 15\, Ra_c$ and (ii) at Pr = 0.01 the QG and 3-D models disagree for $Ra\gt 10\, Ra_c$ while the hybrid and 3-D models agree fairly well up to $Ra \sim 20\, Ra_c$. Models that include laterally varying heat flux at the outer boundary reproduce regional convection patterns that compare well with those found in similarly forced 3-D models. Previously proposed scaling laws for rapidly rotating convection are tested; our simulations are overall well described by a triple balance between Coriolis, inertia and Archimedean forces with the length-scale of the convection following the diffusion-free Rhines-scaling. The magnitude of Pr affects the number and the size of the jets with larger structures obtained at lower Pr. Higher velocities and lower heat transport are seen on decreasing Pr with the scaling behaviour of the convective velocity displaying a strong dependence on Pr. This study is an intermediate step towards a hybrid model of core convection also including 3-D magnetic effects.

     
    more » « less