skip to main content


Title: Early volatile depletion on planetesimals inferred from C–S systematics of iron meteorite parent bodies
During the formation of terrestrial planets, volatile loss may occur through nebular processing, planetesimal differentiation, and planetary accretion. We investigate iron meteorites as an archive of volatile loss during planetesimal processing. The carbon contents of the parent bodies of magmatic iron meteorites are reconstructed by thermodynamic modeling. Calculated solid/molten alloy partitioning of C increases greatly with liquid S concentration, and inferred parent body C concentrations range from 0.0004 to 0.11 wt%. Parent bodies fall into two compositional clusters characterized by cores with medium and low C/S. Both of these require significant planetesimal degassing, as metamorphic devolatilization on chondrite-like precursors is insufficient to account for their C depletions. Planetesimal core formation models, ranging from closed-system extraction to degassing of a wholly molten body, show that significant open-system silicate melting and volatile loss are required to match medium and low C/S parent body core compositions. Greater depletion in C relative to S is the hallmark of silicate degassing, indicating that parent body core compositions record processes that affect composite silicate/iron planetesimals. Degassing of bare cores stripped of their silicate mantles would deplete S with negligible C loss and could not account for inferred parent body core compositions. Devolatilization during small-body differentiation is thus a key process in shaping the volatile inventory of terrestrial planets derived from planetesimals and planetary embryos.  more » « less
Award ID(s):
1763189
NSF-PAR ID:
10221031
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
13
ISSN:
0027-8424
Page Range / eLocation ID:
e2026779118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As an element ubiquitous in the Solar system, the isotopic composition of iron exhibits rich variations in different planetary reservoirs. Such variations reflect the diverse range of differentiation and evolution processes experienced by their parent bodies. A key in deciphering iron isotope variations among planetary samples is to understand how iron isotopes fractionate during core formation. Here we report new Nuclear Resonant Inelastic X‐ray Scattering experiments on silicate glasses of bulk silicate Earth compositions to measure their force constants at high pressures of up to 30 GPa. The force constant results are subsequently used to constrain iron isotope fractionation during core formation on terrestrial planets. Using a model that integrates temperature, pressure, core composition, and redox state of the silicate mantle, we show that core formation might lead to an isotopically light mantle for small planetary bodies but a heavy one for Earth‐sized terrestrial planets.

     
    more » « less
  2. Abstract We investigated the hydrogen isotopic compositions and water contents of pyroxenes in two recent ordinary chondrite falls, namely, Chelyabinsk (2013 fall) and Benenitra (2018 fall), and compared them to three ordinary chondrite Antarctic finds, namely, Graves Nunataks GRA 06179, Larkman Nunatak LAR 12241, and Dominion Range DOM 10035. The pyroxene minerals in Benenitra and Chelyabinsk are hydrated (∼0.018–0.087 wt.% H 2 O) and show D-poor isotopic signatures ( δ D SMOW from −444‰ to −49‰). On the contrary, the ordinary chondrite finds exhibit evidence of terrestrial contamination with elevated water contents (∼0.039–0.174 wt.%) and δ D SMOW values (from −199‰ to −14‰). We evaluated several small parent-body processes that are likely to alter the measured compositions in Benenitra and Chelyabinsk and inferred that water loss in S-type planetesimals is minimal during thermal metamorphism. Benenitra and Chelyabinsk hydrogen compositions reflect a mixed component of D-poor nebular hydrogen and water from the D-rich mesostases. A total of 45%–95% of water in the minerals characterized by low δ D SMOW values was contributed by nebular hydrogen. S-type asteroids dominantly composed of nominally anhydrous minerals can hold 254–518 ppm of water. Addition of a nebular water component to nominally dry inner solar system bodies during accretion suggests a reduced need of volatile delivery to the terrestrial planets during late accretion. 
    more » « less
  3. null (Ed.)
    Composition of terrestrial planets records planetary accretion, core–mantle and crust–mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. Earth and Mars are equally enriched in refractory elements (1.9 × CI), although Earth is more volatile-depleted and less oxidized than Mars. Their chemical compositions were established by nebular fractionation, with negligible contributions from post-accretionary losses of moderately volatile elements. The degree of planetary volatile element depletion might correlate with the abundances of chondrules in the accreted materials, planetary size, and their accretion timescale, which provides insights into composition and origin of Mercury, Venus, the Moon-forming giant impactor, and the proto-Earth. During its formation before and after the nebular disk’s lifetime, the Earth likely accreted more chondrules and less matrix-like materials than Mars and chondritic asteroids, establishing its marked volatile depletion. A giant impact of an oxidized, differentiated Mars-like (i.e., composition and mass) body into a volatile-depleted, reduced proto-Earth produced a Moon forming debris ring with mostly a proto-Earth’s mantle composition. Chalcophile and some siderophile elements in the silicate Earth added by the Mars-like impactor were extracted into the core by a sulfide melt (~0.5% of the mass of the Earth’s mantle). In contrast, the composition of Mars indicates its rapid accretion of lesser amounts of chondrules under nearly uniform oxidizing conditions. Mars’ rapid cooling and early loss of its dynamo likely led to the absence of plate tectonics and surface water, and the present-day low surface heat flux. These similarities and differences between the Earth and Mars made the former habitable and the other inhospitable to uninhabitable. 
    more » « less
  4. Abstract

    Formation models in which terrestrial bodies grow via the pairwise accretion of planetesimals have been reasonably successful at reproducing the general properties of the Solar System, including small-body populations. However, planetesimal accretion has not yet been fully explored in the context of the wide variety of recently discovered extrasolar planetary systems, in particular those that host short-period terrestrial planets. In this work, we use directN-body simulations to explore and understand the growth of planetary embryos from planetesimals in disks extending down to ≃1 day orbital periods. We show that planetesimal accretion becomes nearly 100% efficient at short orbital periods, leading to embryo masses that are much larger than the classical isolation mass. For rocky bodies, the physical size of the object begins to occupy a significant fraction of its Hill sphere toward the inner edge of the disk. In this regime, most close encounters result in collisions, rather than scattering, and the system does not develop a bimodal population of dynamically hot planetesimals and dynamically cold oligarchs, as is seen in previous studies. The highly efficient accretion seen at short orbital periods implies that systems of tightly packed inner planets should be almost completely devoid of any residual small bodies. We demonstrate the robustness of our results to assumptions about the initial disk model, and we also investigate the effects that our simplified collision model has on the emergence of this non-oligarchic growth mode in a planet-forming disk.

     
    more » « less
  5. Core formation in small planetary bodies likely involves percolation of immiscible liquids (e.g. S- and C- rich iron alloys) through pore spaces in a silicate medium. The manner in which this phenomenon occurs is not fully understood. Furthermore, it is unknown whether the metallic melts can physically segregate during percolation. To improve our understanding of core formation in small planetesimals, we performed analog experiments. We used an emulsion of oil and water to simulate an emulsion of S-rich and C-rich iron alloys, respectively. The experiments were performed in a Hele-Shaw cell, a thin “channel” made of two acrylic plates (51 cm x 15 cmx 1.3 cm) kept apart with a thin aluminum plate (0.27 mm). A U-shaped cut out of the aluminum plate formed the channel. We used a syringe pump to inject the emulsion into the channel through a hole in the top plate. We investigated the effect of injection rate and droplet size on the percolation behavior of the emulsion. We observed that droplet velocity was size dependent. The smallest droplet size detected was 0.0133 mm2 with a velocity of 0.67 mm/s. Medium size droplets ranged from 0.03mm2 – ~10 mm2 with average velocity of ~0.43 mm/s. Larger droplets moved faster: the largest droplet, with an area of 91.4 mm2, had a velocity of 7.95 mm/s. We suggest that (1) suspended droplets slow down when they begin to touch the Hele-Shaw plates (medium size droplets), and (2) droplets flow faster when they become large enough to deform with the flow. We also tested percolation through a channel filled with polydisperse acrylic particles of diameter < 50 µm. When injected into the granular matrix, the oil formed a wetting front while the water advanced in “pulses”. These pulses may represent the faster flow of larger water droplets. In conclusion, the size of the droplets affects their velocity and possibly their ability to migrate through pore networks. The results suggest that immiscible liquids could potentially segregate due to different percolation efficiencies of the non-wetting/wetting phases. Consequently, this would affect the distribution of the metallic components within differentiated planetesimals. 
    more » « less