skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PreferenceNet: Encoding Human Preferences in Auction Design with Deep Learning
The design of optimal auctions is a problem of interest in economics, game theory and computer science. Despite decades of effort, strategyproof, revenue-maximizing auction designs are still not known outside of restricted settings. However, recent methods using deep learning have shown some success in approximating optimal auctions, recovering several known solutions and outperforming strong baselines when optimal auctions are not known. In addition to maximizing revenue, auction mechanisms may also seek to encourage socially desirable constraints such as allocation fairness or diversity. However, these philosophical notions neither have standardization nor do they have widely accepted formal definitions. In this paper, we propose PreferenceNet, an extension of existing neural-network-based auction mechanisms to encode constraints using (potentially human-provided) exemplars of desirable allocations. In addition, we introduce a new metric to evaluate an auction allocations' adherence to such socially desirable constraints and demonstrate that our proposed method is competitive with current state-of-the-art neural-network based auction designs. We validate our approach through human subject research and show that we are able to effectively capture real human preferences.  more » « less
Award ID(s):
1846237 1852352
PAR ID:
10315235
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The design of multi-item, multi-bidder auctions involves a delicate balancing act of economic objectives, bidder incentives, and real-world complexities. Efficient auctions, that is, auctions that allocate items to maximize total bidder value, are practically desirable since they promote the most economically beneficial use of resources. Arguably the biggest drawback of efficient auctions, however, is their potential to generate very low revenue. In this work, we show how the auction designer can artificially inject competition into the auction to boost revenue while striving to maintain efficiency. First, we invent a new auction family that enables the auction designer to specify competition in a precise, expressive, and interpretable way. We then introduce a new model of bidder behavior and individual rationality to understand how bidders act when prices are too competitive. Next, under our bidder behavior model, we use our new competitive auction class to derive the globally revenue-optimal efficient auction under two different knowledge models for the auction designer: knowledge of full bidder value distributions and knowledge of bidder value quantiles. Finally, we study a third knowledge model for the auction designer: knowledge of historical bidder valuation data. In this setting we present sample and computationally efficient learning algorithms that find high-revenue probably-efficient competitive auctions from bidder data. Our learning algorithms are instance adaptive and can be run in parallel across bidders, unlike most prior approaches to data-driven auction design. 
    more » « less
  2. We propose a new architecture to approximately learn incentive compatible, revenue-maximizing auctions from sampled valuations. Our architecture uses the Sinkhorn algorithm to perform a differentiable bipartite matching which allows the network to learn strategyproof revenue-maximizing mechanisms in settings not learnable by the previous RegretNet architecture. In particular, our architecture is able to learn mechanisms in settings without free disposal where each bidder must be allocated exactly some number of items. In experiments, we show our approach successfully recovers multiple known optimal mechanisms and high-revenue, low-regret mechanisms in larger settings where the optimal mechanism is unknown. 
    more » « less
  3. Deligkas, Argyrios; Filos-Ratsikas, Aris (Ed.)
    We study a dynamic model of procurement auctions in which the agents (sellers) will abandon the auction if their utility does not satisfy their private target, in any given round. We call this “abandonment” and analyze its consequences on the overall cost to the mechanism designer (buyer), as it reduces competition in future rounds of the auction and drives up the price. We show that in order to maintain competition and minimize the overall cost, the mechanism designer has to adopt an inefficient (per-round) allocation, namely to assign the demand to multiple agents in a single round. We focus on threshold mechanisms as a simple way to achieve ex-post incentive compatibility, akin to reserves in revenue-maximizing forward auctions. We then consider the optimization problem of finding the optimal thresholds. We show that even though our objective function does not have the optimal substructure property in general, if the underlying distributions satisfy some regularity properties, the global optimal solution lies within a region where the optimal thresholds are monotone and can be calculated with a greedy approach, or even more simply in a parallel fashion. 
    more » « less
  4. null (Ed.)
    We identify the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. This is one instance of a more general framework for designing two-part tariff auctions, adapting the duality framework of Cai et al [CDW16]. Given a (not necessarily incentive compatible) auction format A satisfying certain technical conditions, our framework augments the auction with a personalized entry fee for each bidder, which must be paid before the auction can be accessed. These entry fees depend only on the prior distribution of bidder types, and in particular are independent of realized bids. Our framework can be used with many common auction formats, such as simultaneous first-price, simultaneous second-price, and simultaneous all-pay auctions. If all-pay auctions are used, we prove that the resulting mechanism is credible in the sense that the auctioneer cannot benefit by deviating from the stated mechanism after observing agent bids. If second-price auctions are used, we obtain a truthful O(1)-approximate mechanism with fixed entry fees that are amenable to tuning via online learning techniques. Our results for first price and all-pay are the first revenue guarantees of non-truthful mechanisms in multi-dimensional environments; an open question in the literature [RST17]. 
    more » « less
  5. Most results in revenue-maximizing mechanism design hinge on “getting the price right”—selling goods to bidders at prices low enough to encourage a sale but high enough to garner nontrivial revenue. This approach is difficult to implement when the seller has little or no a priori information about bidder valuations or when the setting is sufficiently complex, such as matching markets with heterogeneous goods. In this paper, we apply a robust approach to designing auctions for revenue. Instead of relying on prior knowledge regarding bidder valuations, we “let the market do the work” and let prices emerge from competition for scarce goods. We analyze the revenue guarantees of one of the simplest imaginable implementations of this idea: first, we enhance competition in the market by increasing demand (or alternatively, by limiting supply), and second, we run a standard second price (Vickrey) auction. In their renowned work from 1996 , Bulow and Klemperer [Bulow J, Klemperer P (1996) Auctions vs. negotiations. Amer. Econom. Rev. 86(1):180–194.] apply this method to markets with single goods. As our main result, we give the first application beyond single-parameter settings, proving that, simultaneously for many valuation distributions, this method achieves expected revenue at least as good as the optimal revenue in the original market. Our robust and simple approach provides a handle on the elusive optimal revenue in multiitem matching markets and shows when the use of welfare-maximizing Vickrey auctions is justified, even if revenue is a priority. By establishing quantitative tradeoffs, our work provides guidelines for a seller in choosing among two different revenue-extracting strategies: sophisticated pricing based on market research or advertising to draw additional bidders. 
    more » « less