The daytime oxidation of biogenic hydrocarbons is attributed to both OH radicals and O3, while nighttime chemistry is dominated by the reaction with O3 and NO3 radicals. Here, the diurnal pattern of Secondary Organic Aerosol (SOA) originating from biogenic hydrocarbons was intensively evaluated under varying environmental conditions (temperature, humidity, sunlight intensity, NOx levels, and seed conditions) by using the UNIfied Partitioning Aerosol phase Reaction (UNIPAR) model, which comprises multiphase gas-particle partitioning and in-particle chemistry. The oxidized products of three different hydrocarbons (isoprene, α-pinene, and β-caryophyllene) were predicted by using near explicit gas mechanisms for four different oxidation paths (OH, O3, NO3, and O(3P)) during day and night. The gas mechanisms implemented the Master Chemical Mechanism (MCM v3.3.1), the reactions that formed low volatility products via peroxy radical (RO2) autoxidation, and self- and cross-reactions of nitrate-origin RO2. In the model, oxygenated products were then classified into volatility-reactivity base lumping species, which were dynamically constructed under varying NOx levels and aging scales. To increase feasibility, the UNIPAR model that equipped mathematical equations for stoichiometric coefficients and physicochemical parameters of lumping species was integrated with the SAPRC gas mechanism. The predictability of the UNIPAR model was demonstrated by simulating chamber-generated SOA data undermore »
Explicit modeling of isoprene chemical processing in polluted air masses in suburban areas of the Yangtze River Delta region: radical cycling and formation of ozone and formaldehyde
Abstract. In recent years, ozone pollution has become one of the most severeenvironmental problems in China. Evidence from observations have showedincreased frequency of high O3 levels in suburban areas of the YangtzeRiver Delta (YRD) region. To better understand the formation mechanism oflocal O3 pollution and investigate the potential role of isoprenechemistry in the budgets of ROx (OH+HO2+RO2) radicals,synchronous observations of volatile organic compounds (VOCs), formaldehyde(HCHO), and meteorological parameters were conducted at a suburban site ofthe YRD region in 2018. Five episodes with elevated O3 concentrationsunder stagnant meteorological conditions were identified; anobservation-based model (OBM) with the Master Chemical Mechanism was appliedto analyze the photochemical processes during these high O3 episodes.The high levels of O3, nitrogen oxides (NOx), and VOCs facilitatedstrong production and recycling of ROx radicals with the photolysis ofoxygenated VOCs (OVOCs) being the primary source. Our results suggest thatlocal biogenic isoprene is important in suburban photochemical processes.Removing isoprene could drastically slow down the efficiency of ROx recyclingand reduce the concentrations of ROx. In addition, the absence of isoprenechemistry could further lead to a decrease in the daily average concentrationsof O3 and HCHO by 34 % and 36 %, respectively. Therefore, thisstudy emphasizes the importance of isoprene chemistry in the suburbanatmosphere, particularly with more »
- Award ID(s):
- 1743401
- Publication Date:
- NSF-PAR ID:
- 10315316
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 21
- Issue:
- 8
- ISSN:
- 1680-7324
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Reactions of the hydroxyl (OH) and peroxy (HO2 and RO2) radicals playa central role in the chemistry of the atmosphere. In addition to controlling the lifetimes ofmany trace gases important to issues of global climate change, OH radical reactionsinitiate the oxidation of volatile organic compounds (VOCs) which can lead to the production ofozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicalsin forest environments characterized by high mixing ratios of isoprene and low mixing ratios ofnitrogen oxides (NOx) (typically less than 1–2 ppb) have shown seriousdiscrepancies with modeled concentrations. These results bring into question our understanding ofthe atmospheric chemistry of isoprene and other biogenic VOCs under low NOxconditions. During the summer of 2015, OH and HO2 radical concentrations, as well as totalOH reactivity, were measured using laser-induced fluorescence–fluorescence assay by gasexpansion (LIF-FAGE) techniques as part of the Indiana Radical Reactivity and Ozone productioN InterComparison (IRRONIC). This campaign took place in a forested area near Indiana University's Bloomington campus which is characterized by high mixing ratios of isoprene (average daily maximum ofapproximately 4 ppb at 28 ∘C) and low mixing ratios of NO (diurnal averageof approximately 170 ppt). Supporting measurements of photolysis rates, VOCs,NOx, and other species were used to constrain a zero-dimensional boxmore »
-
Abstract. Oxygenated organic molecules (OOMs) are the crucial intermediates linkingvolatile organic compounds (VOCs) to secondary organic aerosols (SOAs) in theatmosphere, but comprehensive understanding of the characteristics of OOMsand their formation from VOCs is still missing. Ambient observations ofOOMs using recently developed mass spectrometry techniques are stilllimited, especially in polluted urban atmospheres where VOCs and oxidants areextremely variable and complex. Here, we investigate OOMs, measured by anitrate-ion-based chemical ionization mass spectrometer at Nanjing ineastern China, through performing positive matrix factorization on binnedmass spectra (binPMF). The binPMF analysis reveals three factors aboutanthropogenic VOC (AVOC) daytime chemistry, three isoprene-relatedfactors, three factors about biogenic VOC (BVOC) nighttime chemistry, andthree factors about nitrated phenols. All factors are influenced by NOxin different ways and to different extents. Over 1000 non-nitro moleculeshave been identified and then reconstructed from the selected solution ofbinPMF, and about 72 % of the total signals are contributed bynitrogen-containing OOMs, mostly regarded as organic nitrates formed throughperoxy radicals terminated by nitric oxide or nitrate-radical-initiatedoxidations. Moreover, multi-nitrates account for about 24 % of the totalsignals, indicating the significant presence of multiple generations,especially for isoprene (e.g., C5H10O8N2 andC5H9O10N3). Additionally, the distribution of OOMconcentration on the carbon number confirms their precursors are driven by AVOCsmixed with enhanced BVOCsmore »
-
We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3, and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO2). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to anmore »
-
Abstract. A new technique was used to directly measure O3 response to changes inprecursor NOx and volatile organic compound (VOC) concentrations in the atmosphere using threeidentical Teflon smog chambers equipped with UV lights. One chamberserved as the baseline measurement for O3 formation, one chamber addedNOx, and one chamber added surrogate VOCs (ethylene, m-xylene,n-hexane). Comparing the O3 formation between chambers over a3-hour UV cycle provides a direct measurement of O3 sensitivity toprecursor concentrations. Measurements made with this system at Sacramento,California, between April–December 2020 revealed that theatmospheric chemical regime followed a seasonal cycle. O3 formation wasVOC-limited (NOx-rich) during the early spring, transitioned toNOx-limited during the summer due to increased concentrations ofambient VOCs with high O3 formation potential, and then returned toVOC-limited (NOx-rich) during the fall season as the concentrations ofambient VOCs decreased and NOx increased. This seasonal pattern ofO3 sensitivity is consistent with the cycle of biogenic emissions inCalifornia. The direct chamber O3 sensitivity measurements matchedsemi-direct measurements of HCHO/NO2 ratios from the TROPOsphericMonitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor (Sentinel-5P) satellite. Furthermore, the satellite observations showed thatthe same seasonal cycle in O3 sensitivity occurred over most of theentire state of California, with only the urban cores of the very largecities remaining VOC-limited across all seasons. The O3-nonattainmentdays (MDA8 O3>70 ppb)more »