skip to main content

Title: Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermal–optical carbon analyzer
Abstract. Carbonaceous aerosols have great influence on the air quality, human healthand climate change. Except for organic carbon (OC) and elemental carbon (EC), brown carbon (BrC) mainly originates from biomass burning as a group of OC, with strong absorption from the visible to near-ultravioletwavelengths, and makes a considerable contribution to global warming. Largenumbers of studies have reported long-term observation of OC and ECconcentrations throughout the world, but studies of BrC based on long-termobservations are rather limited. In this study, we established atwo-wavelength method (658 and 405 nm) applied in the Sunset thermal–optical carbon analyzer. Based on a 1-year observation, we firstly investigated the characteristics, meteorological impact and transport process of OC and EC. Since BrC absorbs light at 405 nm more effectively than 658 nm, we defined the enhanced concentrations (dEC = EC405 nm − EC658 nm) and gave the possibility of providing an indicator of BrC. The receptor model and MODIS fire information were used to identify the presence of BrC aerosols. Our results showed that the carbonaceous aerosol concentrations were the highest in winter and lowest in summer. Traffic emission was an important source of carbonaceous aerosols in Nanjing. Receptor model results showed that strong local emissions were found for OC and EC; however, dEC was significantly affected by regional or long-range transport.The dEC/OC and OC/EC ratios showed more » similar diurnal patterns, and the dEC/OC increased when the OC/EC ratios increased, indicating strong secondarysources or biomass burning contributions to dEC. A total of two biomass burning events both in summer and winter were analyzed, and the results showed that the dEC concentrations were obviously higher on biomass burning days; however, no similar levels of the OC and EC concentrations were found both in biomass burning days and normal days in summer, suggesting that biomass burning emissions made a great contribution to dEC, and the sources of OC and EC were more complicated. Large number of open fire counts from the northwestern and southwestern areas of the study site were observed in winter and significantly contributed to OC, EC and dEC. In addition, the nearby Yangtze River Deltaarea was one of the main potential source areas of dEC, suggesting thatanthropogenic emissions could also be important sources of dEC. The resultsproved that dEC can be an indicator of BrC on biomass burning days. Ourmodified two-wavelength instrument provided more information than thetraditional single-wavelength thermal–optical carbon analyzer and gave a new idea about the measurement of BrC; the application of dEC data needs to be further investigated. « less
Authors:
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1743401
Publication Date:
NSF-PAR ID:
10315318
Journal Name:
Atmospheric Measurement Techniques
Volume:
14
Issue:
6
ISSN:
1867-8548
Sponsoring Org:
National Science Foundation
More Like this
  1. The light-absorption properties of brown carbon (BrC) are often estimated using offline, solvent-extraction methods. However, recent studies have found evidence of insoluble BrC species that are unaccounted for in solvent extraction. In this work, we produced carbonaceous aerosol particles from the combustion of three biomass fuels (pine needles, hickory twigs, and oak foliage). We utilized a combination of online and offline measurements and optical calculations to estimate the mass fractions and contribution to light absorption by methanol-soluble BrC (MSBrC), methanol-insoluble BrC (MIBrC), and elemental carbon (EC). Averaged over all experiments, the majority of the carbonaceous aerosol species were attributed to MSBrC (90% ± 5%), while MIBrC and EC constituted 9% ± 5% and 1% ± 0.5%, respectively. The BrC produced in all experiments was moderately absorbing, with an imaginary component of the refractive index ( k ) at 532 nm ranging between 0.01 and 0.05. However, the k values at 532 nm of the MSBrC (0.004 ± 0.002) and MIBrC (0.211 ± 0.113) fractions were separated by two orders of magnitude, with MSBrC categorized as weakly absorbing BrC and MIBrC as strongly absorbing BrC. Consequently, even though MSBrC constituted the majority of the aerosol mass, MIBrC had a dominant contributionmore »to light absorption at 532 nm (72% ± 11%). The findings presented in this paper provide support for previous reports of the existence of strongly absorbing, methanol-insoluble BrC species and indicate that relying on methanol extraction to characterize BrC in biomass-burning emissions would severely underestimate its absorption.« less
  2. Abstract. Urbanization and deforestation have important impacts on atmosphericparticulate matter (PM) over Amazonia. This study presents observations andanalysis of PM1 concentration, composition, and opticalproperties in central Amazonia during the dry season, focusing on theanthropogenic impacts. The primary study site was located 70 km downwind ofManaus, a city of over 2 million people in Brazil, as part of theGoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol massspectrometer (AMS) provided data on PM1 composition, and aethalometermeasurements were used to derive the absorption coefficient babs,BrC ofbrown carbon (BrC) at 370 nm. Non-refractory PM1 mass concentrationsaveraged 12.2 µg m−3 at the primary study site, dominated byorganics (83 %), followed by sulfate (11 %). A decrease inbabs,BrC was observed as the mass concentration of nitrogen-containingorganic compounds decreased and the organic PM1 O:C ratio increased,suggesting atmospheric bleaching of the BrC components. The organic PM1was separated into six different classes by positive-matrix factorization(PMF), and the mass absorption efficiency Eabs associated with eachfactor was estimated through multivariate linear regression ofbabs,BrC on the factor loadings. The largest Eabs values wereassociated with urban (2.04±0.14 m2 g−1) and biomass-burning(0.82±0.04 to 1.50±0.07 m2 g−1) sources. Together, these sources contributed at least 80 % ofbabs,BrCmore »while accounting for 30 % to 40 % of the organic PM1 massconcentration. In addition, a comparison of organic PM1 compositionbetween wet and dry seasons revealed that only part of the 9-foldincrease in mass concentration between the seasons can be attributed tobiomass burning. Biomass-burning factor loadings increased by 30-fold,elevating its relative contribution to organic PM1 from about 10 % inthe wet season to 30 % in the dry season. However, most of the PM1mass (>60 %) in both seasons was accounted for by biogenicsecondary organic sources, which in turn showed an 8-fold seasonalincrease in factor loadings. A combination of decreased wet deposition andincreased emissions and oxidant concentrations, as well as a positivefeedback on larger mass concentrations are thought to play a role in theobserved increases. Furthermore, fuzzy c-means clustering identified threeclusters, namely “baseline”, “event”, and “urban” to representdifferent pollution influences during the dry season. The baseline cluster,representing the dry season background, was associated with a mean massconcentration of 9±3 µg m−3. This concentration increasedon average by 3 µg m−3 for both the urban and the event clusters.The event cluster, representing an increased influence of biomass burningand long-range transport of African volcanic emissions, was characterized byremarkably high sulfate concentrations. The urban cluster, representing theinfluence of Manaus emissions on top of the baseline, was characterized byan organic PM1 composition that differed from the other two clusters.The differences discussed suggest a shift in oxidation pathways as well asan accelerated oxidation cycle due to urban emissions, in agreement withfindings for the wet season.

    « less
  3. The evolution of organic aerosol (OA) and brown carbon (BrC) in wildfire plumes, including the relative contributions of primary versus secondary sources, has been uncertain in part because of limited knowledge of the precursor emissions and the chemical environment of smoke plumes. We made airborne measurements of a suite of reactive trace gases, particle composition, and optical properties in fresh western US wildfire smoke in July through August 2018. We use these observations to quantify primary versus secondary sources of biomass-burning OA (BBPOA versus BBSOA) and BrC in wildfire plumes. When a daytime wildfire plume dilutes by a factor of 5 to 10, we estimate that up to one-third of the primary OA has evaporated and subsequently reacted to form BBSOA with near unit yield. The reactions of measured BBSOA precursors contribute only 13 ± 3% of the total BBSOA source, with evaporated BBPOA comprising the rest. We find that oxidation of phenolic compounds contributes the majority of BBSOA from emitted vapors. The corresponding particulate nitrophenolic compounds are estimated to explain 29 ± 15% of average BrC light absorption at 405 nm (BrC Abs405) measured in the first few hours of plume evolution, despite accounting for just 4 ± 2%more »of average OA mass. These measurements provide quantitative constraints on the role of dilution-driven evaporation of OA and subsequent radical-driven oxidation on the fate of biomass-burning OA and BrC in daytime wildfire plumes and point to the need to understand how processing of nighttime emissions differs.

    « less
  4. Abstract. To better understand the effects of wildfires on air quality andclimate, it is important to assess the occurrence of chromophoric compoundsin smoke and characterize their optical properties. This study explores themolecular composition of light-absorbing organic aerosol, or brown carbon(BrC), sampled at the Missoula Fire Sciences laboratory as a part of theFIREX Fall 2016 lab intensive. A total of 12 biomass fuels from different planttypes were tested, including gymnosperm (coniferous) and angiosperm(flowering) plants and different ecosystem components such as duff, litter,and canopy. Emitted biomass burning organic aerosol (BBOA) particles werecollected onto Teflon filters and analyzed offline using high-performanceliquid chromatography coupled to a photodiode array spectrophotometer and a high-resolution mass spectrometer(HPLC–PDA–HRMS). Separated BrC chromophores were classified by theirretention times, absorption spectra, integrated absorbance in the near-UVand visible spectral range (300–700 nm), and chemical formulas from theaccurate m∕z measurements. BrC chromophores were grouped into the followingclasses and subclasses: lignin-derived products, which include lignin pyrolysisproducts; distillation products, which include coumarins and flavonoids;nitroaromatics; and polycyclic aromatic hydrocarbons (PAHs). The observedclasses and subclasses were common across most fuel types, although specific BrCchromophores varied based on plant type (gymnosperm or angiosperm) andecosystem component(s) burned. To study the stability of the observed BrCcompounds with respect to photodegradation, BBOA particlemore »samples wereirradiated directly on filters with near UV (300–400 nm) radiation, followedby extraction and HPLC–PDA–HRMS analysis. Lifetimes of individual BrCchromophores depended on the fuel type and the corresponding combustioncondition. Lignin-derived and flavonoid classes of BrC generally hadthe longest lifetimes with respect to UV photodegradation. Moreover,lifetimes for the same type of BrC chromophores varied depending on biomassfuel and combustion conditions. While individual BrC chromophoresdisappeared on a timescale of several days, the overall light absorption bythe sample persisted longer, presumably because the condensed-phasephotochemical processes converted one set of chromophores into anotherwithout complete photobleaching or from undetected BrC chromophores thatphotobleached more slowly. To model the effect of BrC on climate, it isimportant to understand the change in the overall absorption coefficientwith time. We measured the equivalent atmospheric lifetimes of the overallBrC absorption coefficient, which ranged from 10 to 41 d, with subalpinefir having the shortest lifetime and conifer canopies, i.e., juniper, havingthe longest lifetime. BrC emitted from biomass fuel loads encompassingmultiple ecosystem components (litter, shrub, canopy) had absorptionlifetimes on the lower end of the range. These results indicate thatphotobleaching of BBOA by condensed-phase photochemistry isrelatively slow. Competing chemical aging mechanisms, such as heterogeneousoxidation by OH, may be more important for controlling the rate of BrCphotobleaching in BBOA.« less
  5. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>