skip to main content


Title: A dominant contribution to light absorption by methanol-insoluble brown carbon produced in the combustion of biomass fuels typically consumed in wildland fires in the United States
The light-absorption properties of brown carbon (BrC) are often estimated using offline, solvent-extraction methods. However, recent studies have found evidence of insoluble BrC species that are unaccounted for in solvent extraction. In this work, we produced carbonaceous aerosol particles from the combustion of three biomass fuels (pine needles, hickory twigs, and oak foliage). We utilized a combination of online and offline measurements and optical calculations to estimate the mass fractions and contribution to light absorption by methanol-soluble BrC (MSBrC), methanol-insoluble BrC (MIBrC), and elemental carbon (EC). Averaged over all experiments, the majority of the carbonaceous aerosol species were attributed to MSBrC (90% ± 5%), while MIBrC and EC constituted 9% ± 5% and 1% ± 0.5%, respectively. The BrC produced in all experiments was moderately absorbing, with an imaginary component of the refractive index ( k ) at 532 nm ranging between 0.01 and 0.05. However, the k values at 532 nm of the MSBrC (0.004 ± 0.002) and MIBrC (0.211 ± 0.113) fractions were separated by two orders of magnitude, with MSBrC categorized as weakly absorbing BrC and MIBrC as strongly absorbing BrC. Consequently, even though MSBrC constituted the majority of the aerosol mass, MIBrC had a dominant contribution to light absorption at 532 nm (72% ± 11%). The findings presented in this paper provide support for previous reports of the existence of strongly absorbing, methanol-insoluble BrC species and indicate that relying on methanol extraction to characterize BrC in biomass-burning emissions would severely underestimate its absorption.  more » « less
Award ID(s):
1748080
NSF-PAR ID:
10323067
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Environmental Science: Atmospheres
Volume:
2
Issue:
2
ISSN:
2634-3606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The methanol extraction method was widely applied to isolate organic carbon(OC) from ambient aerosols, followed by measurements of brown carbon (BrC)absorption. However, undissolved OC fractions will lead to underestimatedBrC absorption. In this work, water, methanol (MeOH), MeOH / dichloromethane(MeOH / DCM, 1:1, v/v), MeOH / DCM (1:2, v/v), tetrahydrofuran (THF), andN,N-dimethylformamide (DMF) were tested for extraction efficiencies ofambient OC, and the light absorption of individual solvent extracts wasdetermined. Among the five solvents and solvent mixtures, DMF dissolved thehighest fractions of ambient OC (up to ∼95 %), followed byMeOH and MeOH / DCM mixtures (<90 %), and the DMF extracts hadsignificantly (p<0.05) higher light absorption than other solventextracts. This is because the OC fractions evaporating at highertemperatures (>280∘) are less soluble in MeOH(∼80 %) than in DMF (∼90 %) and containstronger light-absorbing chromophores. Moreover, the light absorption of DMFand MeOH extracts of collocated aerosol samples in Nanjing showed consistenttemporal variations in winter when biomass burning dominated BrC absorption, while the average light absorption of DMF extracts was more than 2 timesgreater than the MeOH extracts in late spring and summer. The average lightabsorption coefficient at 365 nm of DMF extracts was 30.7 % higher (p<0.01) than that of MeOH extracts. Source apportionment resultsindicated that the MeOH solubility of BrC associated with biomass burning,lubricating oil combustion, and coal combustion is similar to their DMFsolubility. The BrC linked with unburned fossil fuels and polymerizationprocesses of aerosol organics was less soluble in MeOH than in DMF, whichwas likely the main reason for the large difference in time series betweenMeOH and DMF extract absorption. These results highlight the importance oftesting different solvents to investigate the structures and lightabsorption of BrC, particularly for the low-volatility fraction potentiallyoriginating from non-combustion sources. 
    more » « less
  2. Abstract. Carbonaceous aerosols have great influence on the air quality, human healthand climate change. Except for organic carbon (OC) and elemental carbon (EC), brown carbon (BrC) mainly originates from biomass burning as a group of OC, with strong absorption from the visible to near-ultravioletwavelengths, and makes a considerable contribution to global warming. Largenumbers of studies have reported long-term observation of OC and ECconcentrations throughout the world, but studies of BrC based on long-termobservations are rather limited. In this study, we established atwo-wavelength method (658 and 405 nm) applied in the Sunset thermal–optical carbon analyzer. Based on a 1-year observation, we firstly investigated the characteristics, meteorological impact and transport process of OC and EC. Since BrC absorbs light at 405 nm more effectively than 658 nm, we defined the enhanced concentrations (dEC = EC405 nm − EC658 nm) and gave the possibility of providing an indicator of BrC. The receptor model and MODIS fire information were used to identify the presence of BrC aerosols. Our results showed that the carbonaceous aerosol concentrations were the highest in winter and lowest in summer. Traffic emission was an important source of carbonaceous aerosols in Nanjing. Receptor model results showed that strong local emissions were found for OC and EC; however, dEC was significantly affected by regional or long-range transport.The dEC/OC and OC/EC ratios showed similar diurnal patterns, and the dEC/OC increased when the OC/EC ratios increased, indicating strong secondarysources or biomass burning contributions to dEC. A total of two biomass burning events both in summer and winter were analyzed, and the results showed that the dEC concentrations were obviously higher on biomass burning days; however, no similar levels of the OC and EC concentrations were found both in biomass burning days and normal days in summer, suggesting that biomass burning emissions made a great contribution to dEC, and the sources of OC and EC were more complicated. Large number of open fire counts from the northwestern and southwestern areas of the study site were observed in winter and significantly contributed to OC, EC and dEC. In addition, the nearby Yangtze River Deltaarea was one of the main potential source areas of dEC, suggesting thatanthropogenic emissions could also be important sources of dEC. The resultsproved that dEC can be an indicator of BrC on biomass burning days. Ourmodified two-wavelength instrument provided more information than thetraditional single-wavelength thermal–optical carbon analyzer and gave a new idea about the measurement of BrC; the application of dEC data needs to be further investigated. 
    more » « less
  3. Abstract. To better understand the effects of wildfires on air quality andclimate, it is important to assess the occurrence of chromophoric compoundsin smoke and characterize their optical properties. This study explores themolecular composition of light-absorbing organic aerosol, or brown carbon(BrC), sampled at the Missoula Fire Sciences laboratory as a part of theFIREX Fall 2016 lab intensive. A total of 12 biomass fuels from different planttypes were tested, including gymnosperm (coniferous) and angiosperm(flowering) plants and different ecosystem components such as duff, litter,and canopy. Emitted biomass burning organic aerosol (BBOA) particles werecollected onto Teflon filters and analyzed offline using high-performanceliquid chromatography coupled to a photodiode array spectrophotometer and a high-resolution mass spectrometer(HPLC–PDA–HRMS). Separated BrC chromophores were classified by theirretention times, absorption spectra, integrated absorbance in the near-UVand visible spectral range (300–700 nm), and chemical formulas from theaccurate m∕z measurements. BrC chromophores were grouped into the followingclasses and subclasses: lignin-derived products, which include lignin pyrolysisproducts; distillation products, which include coumarins and flavonoids;nitroaromatics; and polycyclic aromatic hydrocarbons (PAHs). The observedclasses and subclasses were common across most fuel types, although specific BrCchromophores varied based on plant type (gymnosperm or angiosperm) andecosystem component(s) burned. To study the stability of the observed BrCcompounds with respect to photodegradation, BBOA particle samples wereirradiated directly on filters with near UV (300–400 nm) radiation, followedby extraction and HPLC–PDA–HRMS analysis. Lifetimes of individual BrCchromophores depended on the fuel type and the corresponding combustioncondition. Lignin-derived and flavonoid classes of BrC generally hadthe longest lifetimes with respect to UV photodegradation. Moreover,lifetimes for the same type of BrC chromophores varied depending on biomassfuel and combustion conditions. While individual BrC chromophoresdisappeared on a timescale of several days, the overall light absorption bythe sample persisted longer, presumably because the condensed-phasephotochemical processes converted one set of chromophores into anotherwithout complete photobleaching or from undetected BrC chromophores thatphotobleached more slowly. To model the effect of BrC on climate, it isimportant to understand the change in the overall absorption coefficientwith time. We measured the equivalent atmospheric lifetimes of the overallBrC absorption coefficient, which ranged from 10 to 41 d, with subalpinefir having the shortest lifetime and conifer canopies, i.e., juniper, havingthe longest lifetime. BrC emitted from biomass fuel loads encompassingmultiple ecosystem components (litter, shrub, canopy) had absorptionlifetimes on the lower end of the range. These results indicate thatphotobleaching of BBOA by condensed-phase photochemistry isrelatively slow. Competing chemical aging mechanisms, such as heterogeneousoxidation by OH, may be more important for controlling the rate of BrCphotobleaching in BBOA. 
    more » « less
  4. Abstract

    To understand diurnal variations in PM2.5composition and aerosol extract absorption, PM2.5samples were collected at intervals of 2 hr from 8:00 to 20:00 and 6 hr from 20:00 to 8:00 (the next day) in northern Nanjing, China, during the winter and summer of 2019–2020 and analyzed for bulk components, organic tracers, and light absorption of water and methanol extracts—a proxy measure of brown carbon (BrC). Diurnal patterns of measured species reflected the influences of primary emissions and atmospheric processes. Light absorption coefficients of water (Abs365,w) and methanol extracts (Abs365,m) at 365 nm shared a similar diurnal profile peaking at 18:00–20:00, generally following changes in biomass burning tracers. However, Abs365,w, Abs365,m, and their normalizations to organic aerosols increased at 14:00–16:00, earlier than that of levoglucosan in the late afternoon, which was attributed to secondarily formed BrC. The methanol extracts showed a less drastic decrease in light absorption at night than the water extracts and elevated absorption efficiency during 2:00–8:00. This is due to the fact that the water‐insoluble OC has a longer lifetime and stronger light absorption than the water‐soluble OC. According to the source apportionment results solved by positive matrix factorization (PMF), biomass burning and secondary formation were the major BrC sources in northern Nanjing, with an average total relative contribution of about 90%. Compared to previous studies, diurnal source cycles were added to the PMF simulations in this work by using time‐resolved speciation data, which avoided misclassification of BrC sources.

     
    more » « less
  5. Abstract. Light absorbing organic carbon, or brown carbon (BrC), can be a significantcontributor to the visible light absorption budget. However, the sources ofBrC and the contributions of BrC to light absorption are not wellunderstood. Biomass burning is thought to be a major source of BrC.Therefore, as part of the WE-CAN (Western Wildfire Experiment for CloudChemistry, Aerosol Absorption and Nitrogen) study, BrC absorption data werecollected on board the National Science Foundation/National Center for Atmospheric Research (NSF/NCAR) C-130 aircraft as it intercepted smoke fromwildfires in the western US in July–August 2018. BrC absorptionmeasurements were obtained in near real-time using two techniques. The firstcoupled a particle-into-liquid sampler (PILS) with a liquid waveguidecapillary cell and a total organic carbon analyzer for measurements ofwater-soluble BrC absorption and WSOC (water-soluble organic carbon). Thesecond employed a custom-built photoacoustic aerosol absorption spectrometer(PAS) to measure total absorption at 405 and 660 nm. The PAS BrC absorption at 405 nm (PAS total Abs 405 BrC) was calculated by assuming the absorption determined by the PAS at 660 nm was equivalent to the black carbon (BC) absorption and the BC aerosol absorption Ångström exponent was 1. Data from the PILS and PAS were combined to investigate the water-soluble vs. total BrC absorption at 405 nm in the various wildfire plumes sampled during WE-CAN. WSOC, PILS water-soluble Abs 405, and PAS total Abs 405 tracked each other in and out of the smoke plumes. BrC absorption was correlated with WSOC (R2 value for PAS =0.42 and PILS =0.60) and CO (carbon monoxide) (R2 value for PAS =0.76 and PILS =0.55) for all wildfires sampled. The PILS water-soluble Abs 405 was corrected for thenon-water-soluble fraction of the aerosol using the calculated UHSAS(ultra-high-sensitivity aerosol spectrometer) aerosol mass. The correctedPILS water-soluble Abs 405 showed good closure with the PAS total Abs 405BrC with a factor of ∼1.5 to 2 difference. This differencewas explained by particle vs. bulk solution absorption measured by the PASvs. PILS, respectively, and confirmed by Mie theory calculations. DuringWE-CAN, ∼ 45 % (ranging from 31 % to 65 %) of the BrCabsorption was observed to be due to water-soluble species. The ratio of BrC absorption to WSOC or ΔCO showed no clear dependence on firedynamics or the time since emission over 9 h. 
    more » « less