skip to main content


Title: A Computational Model of Suspense for Non-Narrative Gameplay
In recent years, various mechanisms have been proposed to optimize players’ emotional experience. In this paper, we focus on suspense, one of the key emotions in gameplay. Most previous research on suspense management in games focused on narratives. Instead, we propose a new computational model of Suspense for Non-Narrative Gameplay (SNNG). SNNG is built around a Player Suspense Model (PSM) with three key factors: hope, fear, and uncertainty. These three factors are modeled as three sensors that can be triggered by particular game objects (e.g., NPCs) and game mechanics (e.g., health). A player’s feeling of suspense can be adjusted by altering the level of hope, fear, and uncertainty. Therefore, an SNNG-enhanced game engine could manage a player’s level of suspense by adding or removing game objects, diverting NPCs, adjusting game mechanics, and giving or withholding information. We tested our model by integrating SNNG into a Pacman game. Our preliminary experiment with nine subjects was encouraging.  more » « less
Award ID(s):
1852516
NSF-PAR ID:
10315350
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 24th International Conference Information Visualisation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrating fabrication activities into existing video games provides opportunities for players to construct objects from their gameplay and bring the digital content into the physical world. In our prior work, we outlined a framework and developed a toolkit for integrating fabrication activities within existing digital games. Insights from our prior study highlighted the challenge of aligning fabrication mechanics with the existing game mechanics in order to strengthen the player aesthetics. In this paper, we address this challenge and build on our prior work by adding fabrication components to the Mechanics-Dynamics-Aesthetics (MDA) framework. We use this f-MDA framework to analyze the 47 fabrication events from the prior study. We list the new player-object aesthetics that emerge from integrating the existing game mechanics with fabrication mechanics. We identify connections between these emergent player-object aesthetics and the existing game mechanics. We discuss how designers can use this mapping to identify potential game mechanics for integrating with fabrication activities. 
    more » « less
  2. This paper presents a two-step generative approach for creating dungeons in the rogue-like puzzle game MiniDungeons 2. Gener- ation is split into two steps, initially producing the architectural layout of the level as its walls and floor tiles, and then furnishing it with game objects representing the player’s start and goal position, challenges and rewards. Three layout creators and three furnishers are introduced in this paper, which can be combined in different ways in the two-step generative process for producing diverse dun- geons levels. Layout creators generate the floors and walls of a level, while furnishers populate it with monsters, traps, and treasures. We test the generated levels on several expressivity measures, and in simulations with procedural persona agents. 
    more » « less
  3. McCoy, Josh ; Treanor, Mike ; Samuel, Ben (Ed.)
    We present an intelligent experience management architecture for a virtual reality police de-escalation training platform we are currently developing. Our aim is to direct the cast of non-player characters toward a scenario outcome appropriate to the player’s decisions, resulting in bad endings precisely when player’s mistakes enable them. We use a narrative planner to generate a story graph representing every possible narrative, and then we prune the graph to eliminate less believable non-player character actions. Unlike previous approaches based on story graph pruning, we implement an emotional planning model that lets us represent characters acting out of fear of bad outcomes as well as hope for good ones. We also incorporate experience management techniques for delaying commitment to hidden settings of the scenario and for capitalizing on player mistakes to demonstrate the negative consequences of not following best practices. 
    more » « less
  4. Abstract

    We consider user retention analytics for online freemium role-playing games (RPGs). RPGs constitute a very popular genre of computer-based games that, along with a player’s gaming actions, focus on the development of the player’s in-game virtual character through a persistent exploration of the gaming environment. Most RPGs follow the freemium business model in which the gamers can play for free but they are charged for premium add-on amenities. As with other freemium products, RPGs suffer from the curse of high dropout rates. This makes retention analysis extremely important for successful operation and survival of their gaming portals. Here, we develop a disciplined statistical framework for retention analysis by modelling multiple in-game player characteristics along with the dropout probabilities. We capture players’ motivations through engagement times, collaboration and achievement score at each level of the game, and jointly model them using a generalized linear mixed model (glmm) framework that further includes a time-to-event variable corresponding to churn. We capture the interdependencies in a player’s level-wise engagement, collaboration, achievement with dropout through a shared parameter model. We illustrate interesting changes in player behaviours as the gaming level progresses. The parameters in our joint model were estimated by a Hamiltonian Monte Carlo algorithm which incorporated a divide-and-recombine approach for increased scalability in glmm estimation that was needed to accommodate our large longitudinal gaming data-set. By incorporating the level-wise changes in a player’s motivations and using them for dropout rate prediction, our method greatly improves on state-of-the-art retention models. Based on data from a popular action based RPG, we demonstrate the competitive optimality of our proposed joint modelling approach by exhibiting its improved predictive performance over competitors. In particular, we outperform aggregate statistics based methods that ignore level-wise progressions as well as progression tracking non-joint model such as the Cox proportional hazards model. We also display improved predictions of popular marketing retention statistics and discuss how they can be used in managerial decision making.

     
    more » « less
  5. null (Ed.)
    Open world games present players with more freedom than games with linear progression structures. However, without clearly-defined objectives, they often leave players without a sense of purpose. Most of the time, quests and objectives are hand-authored and overlaid atop an open world's mechanics. But what if they could be generated organically from the gameplay itself? The goal of our project was to develop a model of the mechanics in Minecraft that could be used to determine the ideal placement of objectives in an open world setting. We formalized the game logic of Minecraft in terms of logical rules that can be manipulated in two ways: they may be executed to generate graphs representative of the player experience when playing an open world game with little developer direction; and they may be statically analyzed to determine dependency orderings, feedback loops, and bottlenecks. These analyses may then be used to place achievements on gameplay actions algorithmically. 
    more » « less