skip to main content


Title: Identifying Game Mechanics for Integrating Fabrication Activities within Existing Digital Games
Integrating fabrication activities into existing video games provides opportunities for players to construct objects from their gameplay and bring the digital content into the physical world. In our prior work, we outlined a framework and developed a toolkit for integrating fabrication activities within existing digital games. Insights from our prior study highlighted the challenge of aligning fabrication mechanics with the existing game mechanics in order to strengthen the player aesthetics. In this paper, we address this challenge and build on our prior work by adding fabrication components to the Mechanics-Dynamics-Aesthetics (MDA) framework. We use this f-MDA framework to analyze the 47 fabrication events from the prior study. We list the new player-object aesthetics that emerge from integrating the existing game mechanics with fabrication mechanics. We identify connections between these emergent player-object aesthetics and the existing game mechanics. We discuss how designers can use this mapping to identify potential game mechanics for integrating with fabrication activities.  more » « less
Award ID(s):
2008116
NSF-PAR ID:
10354907
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
CHI '22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Devising models that reliably recognize player goals is a key challenge in creating player-adaptive games. Player goal recognition is the task of automatically recognizing the intent of a player from a sequence of observed player actions in a game environment. In open-world digital games, players often undertake suboptimal and varied sequences of actions to achieve goals, and the high degree of freedom afforded to players makes it challenging to identify sequential patterns that lead toward specific goals. To address these issues, we present a player goal recognition framework that utilizes a fine-tuned T5 language model, which incorporates our novel attention mechanism called Temporal Contrary Attention (TCA). The T5 language model enables the framework to exploit correlations between observations through non-sequential self-attention within input sequences, while TCA enables the framework to learn to eliminate goal hypotheses by considering counterevidence within a temporal window. We evaluate our approach using game trace data collected from 144 players' interactions with an open-world educational game. Specifically, we investigate the predictive capacity of our approach to recognize player goals as well as player plans represented as abstract actions. Results show that our approach outperforms non-linguistic machine learning approaches as well as T5 without TCA. We discuss the implications of these findings for the design and development of player goal recognition models to create player-adaptive games.

     
    more » « less
  2. Idle games are a recent minimalist gaming phenomenon in which the game is left running with little player interaction. We deepen understanding of idle games and their characteristics by developing a taxonomy and identifying game features. This paper examines 66 idle games using a grounded theory approach to analyze play, game mechanics, rewards, interactivity, progress rate, and user interface. To establish a clearly bounded definition of idle games, we analyzed 10 non-idle games with the same approach. We discuss how idle games move players from playing to planning, how they question dominant assumptions about gameplay, and their unusual use of resources such as player attention and computer cycles. Our work illuminates opportunities for the design of idle games, suggests design implications, and provides a framework for researchers to clearly articulate questions about this genre. 
    more » « less
  3. To help facilitate play and learning, game-based educational activities often feature a computational agent as a co-player. Personalizing this agent's behavior to the student player is an active area of research, and prior work has demonstrated the benefits of personalized educational interaction across a variety of domains. A critical research challenge for personalized educational agents is real-time student modeling. Most student models are designed for and trained on only a single task, which limits the variety, flexibility, and efficiency of student player model learning. In this paper we present a research project applying transfer learning methods to student player models over different educational tasks, studying the effects of an algorithmic "multi-task personalization" approach on the accuracy and data efficiency of student model learning. We describe a unified robotic game system for studying multi-task personalization over two different educational games, each emphasizing early language and literacy skills such as rhyming and spelling. We present a flexible Gaussian Process-based approach for rapidly learning student models from interactive play in each game, and a method for transferring each game's learned student model to the other via a novel instance-weighting protocol based on task similarity. We present results from a simulation-based investigation of the impact of multi-task personalization, establishing the core viability and benefits of transferrable student models and outlining new questions for future in-person research. 
    more » « less
  4. null (Ed.)
    To help facilitate play and learning, game-based educational activities often feature a computational agent as a co-player. Personalizing this agent's behavior to the student player is an active area of research, and prior work has demonstrated the benefits of personalized educational interaction across a variety of domains. A critical research challenge for personalized educational agents is real-time student modeling. Most student models are designed for and trained on only a single task, which limits the variety, flexibility, and efficiency of student player model learning. In this paper we present a research project applying transfer learning methods to student player models over different educational tasks, studying the effects of an algorithmic "multi-task personalization" approach on the accuracy and data efficiency of student model learning. We describe a unified robotic game system for studying multi-task personalization over two different educational games, each emphasizing early language and literacy skills such as rhyming and spelling. We present a flexible Gaussian Process-based approach for rapidly learning student models from interactive play in each game, and a method for transferring each game's learned student model to the other via a novel instance-weighting protocol based on task similarity. We present results from a simulation-based investigation of the impact of multi-task personalization, establishing the core viability and benefits of transferrable student models and outlining new questions for future in-person research. 
    more » « less
  5. This experience report describes an approach for helping elementary schools integrate computational thinking and coding by leveraging existing resources and infrastructure that do not rely on 1-1 computing. A particular focus is using the school library and media center as a site to complement and enhance classroom instruction on coding. Further, our approach builds upon "unplugged" knowledge and practices that are already familiar to and motivating for students, in this case tabletop board games. Through these games, students can use their prior knowledge and ease with tabletop gaming mechanics to cue relevant ideas for core computational concepts. We describe a model and an instructional unit spanning across classroom and school library settings that builds upon board game play as a source domain for computing knowledge. Building on expansive framing, the model emphasizes instructional linkages being made between one domain (the tabletop board game) and another (specially designed Scratch project shells with partially complete code blocks) such that the reasoning activities and different contexts are seen as instantiations of the same encompassing context. We present the experiences of three elementary school teachers as they implemented the unit in their classrooms and with their school librarian. We also show initial findings on the impact of the unit on student interest (N=87), as measured by pre- and post- surveys. We conclude with lessons learned about ways to improve the unit and future classroom implementations. 
    more » « less