skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global urban growth between 1870 and 2100 from integrated high resolution mapped data and urban dynamic modeling
Abstract Long term, global records of urban extent can help evaluate environmental impacts of anthropogenic activities. Remotely sensed observations can provide insights into historical urban dynamics, but only during the satellite era. Here, we develop a 1 km resolution global dataset of annual urban dynamics between 1870 and 2100 using an urban cellular automata model trained on satellite observations of urban extent between 1992 and 2013. Hindcast (1870–1990) and projected (2020–2100) urban dynamics under the five Shared Socioeconomic Pathways (SSPs) were modeled. We find that global urban growth under SSP5, the fossil-fuelled development scenario, was largest with a greater than 40-fold increase in urban extent since 1870. The high resolution dataset captures grid level urban sprawl over 200 years, which can provide insights into the urbanization life cycle of cities and help assess long-term environmental impacts of urbanization and human–environment interactions at a global scale.  more » « less
Award ID(s):
2041859
PAR ID:
10315388
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
2
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Long-term, spatial urban land projections that simultaneously offer global coverage and local-scale empirical accuracy are rare. Recently a set of such projections was produced using data-science-based simulations and the Shared Socioeconomic Pathways (SSPs). These projections update at decadal time intervals from 2000 to 2100 with a spatial resolution of 1/8 degree, while many socio-environmental studies customarily run their analysis and modelling at finer spatial resolutions, e.g. 1-km. Here we develop and validate an algorithm to downscale the 1/8-degree spatial urban land projections to the 1-km resolution. The algorithm uses an iterative process to allocate the decadal amount of urban land expansion originally projected for each 1/8-degree grid to its constituent 1-km grids. The results are a set of global maps showing urban land fractions at the 1-km resolution, updated at decadal intervals from 2000 to 2100, under five different urban land expansion scenarios consistent with the SSPs. The data can support studies of potential interactions between future urbanization and environmental changes across spatial and temporal scales. 
    more » « less
  2. Emerging megacities in the global south face unprecedented transformation dynamics, manifested in rapid demographic, economic, and physical growth. Anticipating the associated sustainability and resilience challenges requires an understanding of future trajectories. Global change models provide consistent high-level urbanization scenarios. City-scale urban growth models accurately simulate complex physical growth. Modeling approaches linking the global and the local scale, however, are underdeveloped. This work introduces a novel approach to inform a local urban growth model by global Shared Socioeconomic Pathways to produce consistent maps of future urban expansion and population density via cellular automaton and dasymetric mapping. We demonstrate the approach for the case of Pune, India. Three scenarios are explored until 2050: business as usual (BAU), high, and low urbanization. After calibration and validation, the BAU scenario yields a 55% growth in Pune’s population and 90% in built-up extent, entailing significant impacts: Pune’s core city densifies further with up to 60,000 persons/km2, adding pressure to its strained infrastructure. In addition, 66–70% more residents are exposed to flood risk. Half of the urban expansion replaces agriculture, converting 167 km2 of land. The high-urbanization scenario intensifies these impacts. These results illustrate how spatially explicit scenario projections help identify impacts of urbanization and inform long-term planning. 
    more » « less
  3. Abstract Population change is a main driver behind global environmental change, including urban land expansion. In future scenario modeling, assumptions regarding how populations will change locally, despite identical global constraints of Shared Socioeconomic Pathways (SSPs), can have dramatic effects on subsequent regional urbanization. Using a spatial modeling experiment at high resolution (1 km), this study compared how two alternative US population projections, varying in the spatially explicit nature of demographic patterns and migration, affect urban land dynamics simulated by the Spatially Explicit, Long-term, Empirical City development (SELECT) model for SSP2, SSP3, and SSP5. The population projections included: (1) newer downscaled state-specific population (SP) projections inclusive of updated international and domestic migration estimates, and (2) prevailing downscaled national-level projections (NP) agnostic to localized demographic processes. Our work shows that alternative population inputs, even those under the same SSP, can lead to dramatic and complex differences in urban land outcomes. Under the SP projection, urbanization displays more of an extensification pattern compared to the NP projection. This suggests that recent demographic information supports more extreme urban extensification and land pressures on existing rural areas in the US than previously anticipated. Urban land outcomes to population inputs were spatially variable where areas in close spatial proximity showed divergent patterns, reflective of the spatially complex urbanization processes that can be accommodated in SELECT. Although different population projections and assumptions led to divergent outcomes, urban land development is not a linear product of population change but the result of complex relationships between population, dynamic urbanization processes, stages of urban development maturity, and feedback mechanisms. These findings highlight the importance of accounting for spatial variations in the population projections, but also urbanization process to accurately project long-term urban land patterns. 
    more » « less
  4. Spatially explicit, fine-grained datasets describing historical urban extents are rarely available prior to the era of operational remote sensing. However, such data are necessary to better understand long-term urbanization and land development processes and for the assessment of coupled nature–human systems (e.g., the dynamics of the wildland–urban interface). Herein, we propose a framework that jointly uses remote-sensing-derived human settlement data (i.e., the Global Human Settlement Layer, GHSL) and scanned, georeferenced historical maps to automatically generate historical urban extents for the early 20th century. By applying unsupervised color space segmentation to the historical maps, spatially constrained to the urban extents derived from the GHSL, our approach generates historical settlement extents for seamless integration with the multi-temporal GHSL. We apply our method to study areas in countries across four continents, and evaluate our approach against historical building density estimates from the Historical Settlement Data Compilation for the US (HISDAC-US), and against urban area estimates from the History Database of the Global Environment (HYDE). Our results achieve Area-under-the-Curve values >0.9 when comparing to HISDAC-US and are largely in agreement with model-based urban areas from the HYDE database, demonstrating that the integration of remote-sensing-derived observations and historical cartographic data sources opens up new, promising avenues for assessing urbanization and long-term land cover change in countries where historical maps are available. 
    more » « less
  5. Over the past 200 years, the population of the United States grew more than 40-fold. The resulting development of the built environment has had a profound impact on the regional economic, demographic, and environmental structure of North America. Unfortunately, constraints on data availability limit opportunities to study long-term development patterns and how population growth relates to land-use change. Using hundreds of millions of property records, we undertake the finest-resolution analysis to date, in space and time, of urbanization patterns from 1810 to 2015. Temporally consistent metrics reveal distinct long-term urban development patterns characterizing processes such as settlement expansion and densification at fine granularity. Furthermore, we demonstrate that these settlement measures are robust proxies for population throughout the record and thus potential surrogates for estimating population changes at fine scales. These new insights and data vastly expand opportunities to study land use, population change, and urbanization over the past two centuries. 
    more » « less