Pervasive IoT applications enable us to perceive, analyze, control, and optimize the traditional physical systems. Recently, security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk. Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications. As an extension of the cloud, the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications. Although there are some research efforts in this area, edge-based security designs for IoT applications are still in its infancy. This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs. We first present an edge-centric IoT architecture. Then, we extensively review the edge-based IoT security research efforts in the context of security architecture designs, firewalls, intrusion detection systems, authentication and authorization protocols, and privacy-preserving mechanisms. Finally, we propose our insight into future research directions and open research issues.
more »
« less
Generative Adversarial Networks: A Survey Toward Private and Secure Applications
Generative Adversarial Networks (GANs) have promoted a variety of applications in computer vision and natural language processing, among others, due to its generative model’s compelling ability to generate realistic examples plausibly drawn from an existing distribution of samples. GAN not only provides impressive performance on data generation-based tasks but also stimulates fertilization for privacy and security oriented research because of its game theoretic optimization strategy. Unfortunately, there are no comprehensive surveys on GAN in privacy and security, which motivates this survey to summarize systematically. The existing works are classified into proper categories based on privacy and security functions, and this survey conducts a comprehensive analysis of their advantages and drawbacks. Considering that GAN in privacy and security is still at a very initial stage and has imposed unique challenges that are yet to be well addressed, this article also sheds light on some potential privacy and security applications with GAN and elaborates on some future research directions.
more »
« less
- Award ID(s):
- 1741338
- PAR ID:
- 10315435
- Date Published:
- Journal Name:
- ACM Computing Surveys
- Volume:
- 54
- Issue:
- 6
- ISSN:
- 0360-0300
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Federated Learning (FL) has emerged as an effective paradigm for distributed learning systems owing to its strong potential in exploiting underlying data characteristics while preserving data privacy. In cases of practical data heterogeneity among FL clients in many Internet-of-Things (IoT) applications over wireless networks, however, existing FL frameworks still face challenges in capturing the overall feature properties of local client data that often exhibit disparate distributions. One approach is to apply generative adversarial networks (GANs) in FL to address data heterogeneity by integrating GANs to regenerate anonymous training data without exposing original client data to possible eavesdropping. Despite some successes, existing GAN-based FL frameworks still incur high communication costs and elicit other privacy concerns, limiting their practical applications. To this end, this work proposes a novel FL framework that only applies partial GAN model sharing. This new PS-FedGAN framework effectively addresses heterogeneous data distributions across clients and strengthens privacy preservation at reduced communication costs, especially over wireless networks. Our analysis demonstrates the convergence and privacy benefits of the proposed PS-FEdGAN framework. Through experimental results based on several well-known benchmark datasets, our proposed PS-FedGAN demonstrates strong potential to tackle FL under heterogeneous (non-IID) client data distributions, while improving data privacy and lowering communication overhead.more » « less
-
Information-centric networking (ICN) replaces the widely used host-centric networking paradigm in communication networks (e.g., Internet and mobile ad hoc networks) with an information-centric paradigm, which prioritizes the delivery of named content, oblivious of the contents' origin. Content and client security, provenance, and identity privacy are intrinsic by design in the ICN paradigm as opposed to the current host centric paradigm where they have been instrumented as an afterthought. However, given its nascency, the ICN paradigm has several open security and privacy concerns. In this paper, we survey the existing literature in security and privacy in ICN and present open questions. More specifically, we explore three broad areas: 1) security threats; 2) privacy risks; and 3) access control enforcement mechanisms. We present the underlying principle of the existing works, discuss the drawbacks of the proposed approaches, and explore potential future research directions. In security, we review attack scenarios, such as denial of service, cache pollution, and content poisoning. In privacy, we discuss user privacy and anonymity, name and signature privacy, and content privacy. ICN's feature of ubiquitous caching introduces a major challenge for access control enforcement that requires special attention. We review existing access control mechanisms including encryption-based, attribute-based, session-based, and proxy re-encryption-based access control schemes. We conclude the survey with lessons learned and scope for future work.more » « less
-
Abstract Machine unlearning is a cutting‐edge technology that embodies the privacy legal principle of the right to be forgotten within the realm of machine learning (ML). It aims to remove specific data or knowledge from trained models without retraining from scratch and has gained significant attention in the field of artificial intelligence in recent years. However, the development of machine unlearning research is associated with inherent vulnerabilities and threats, posing significant challenges for researchers and practitioners. In this article, we provide the first comprehensive survey of security and privacy issues associated with machine unlearning by providing a systematic classification across different levels and criteria. Specifically, we begin by investigating unlearning‐based security attacks, where adversaries exploit vulnerabilities in the unlearning process to compromise the security of machine learning (ML) models. We then conduct a thorough examination of privacy risks associated with the adoption of machine unlearning. Additionally, we explore existing countermeasures and mitigation strategies designed to protect models from malicious unlearning‐based attacks targeting both security and privacy. Further, we provide a detailed comparison between machine unlearning‐based security and privacy attacks and traditional malicious attacks. Finally, we discuss promising future research directions for security and privacy issues posed by machine unlearning, offering insights into potential solutions and advancements in this evolving field.more » « less
-
The increased capabilities of generative artificial intelligence (AI) have dramatically expanded its possible use cases in medicine. We provide a comprehensive overview of generative AI use cases for clinicians, patients, clinical trial organizers, researchers, and trainees. We then discuss the many challenges—including maintaining privacy and security, improving transparency and interpretability, upholding equity, and rigorously evaluating models—that must be overcome to realize this potential, as well as the open research directions they give rise to.more » « less
An official website of the United States government

