skip to main content


Title: Generative Adversarial Networks: A Survey Toward Private and Secure Applications
Generative Adversarial Networks (GANs) have promoted a variety of applications in computer vision and natural language processing, among others, due to its generative model’s compelling ability to generate realistic examples plausibly drawn from an existing distribution of samples. GAN not only provides impressive performance on data generation-based tasks but also stimulates fertilization for privacy and security oriented research because of its game theoretic optimization strategy. Unfortunately, there are no comprehensive surveys on GAN in privacy and security, which motivates this survey to summarize systematically. The existing works are classified into proper categories based on privacy and security functions, and this survey conducts a comprehensive analysis of their advantages and drawbacks. Considering that GAN in privacy and security is still at a very initial stage and has imposed unique challenges that are yet to be well addressed, this article also sheds light on some potential privacy and security applications with GAN and elaborates on some future research directions.  more » « less
Award ID(s):
1741338
NSF-PAR ID:
10315435
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Computing Surveys
Volume:
54
Issue:
6
ISSN:
0360-0300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pervasive IoT applications enable us to perceive, analyze, control, and optimize the traditional physical systems. Recently, security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk. Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications. As an extension of the cloud, the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications. Although there are some research efforts in this area, edge-based security designs for IoT applications are still in its infancy. This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs. We first present an edge-centric IoT architecture. Then, we extensively review the edge-based IoT security research efforts in the context of security architecture designs, firewalls, intrusion detection systems, authentication and authorization protocols, and privacy-preserving mechanisms. Finally, we propose our insight into future research directions and open research issues. 
    more » « less
  2. The growing popularity of Machine Learning (ML) has led to its deployment in various sensitive domains, which has resulted in significant research focused on ML security and privacy. However, in some applications, such as Augmented/Virtual Reality, integrity verification of the outsourced ML tasks is more critical–a face that has not received much attention. Existing solutions, such as multi-party computation and proof-based systems, impose significant computation overhead, which makes them unfit for real-time applications. We propose Fides, a novel framework for real-time integrity validation of ML-as-a-Service (MLaaS) inference. Fides features a novel and efficient distillation technique–Greedy Distillation Transfer Learning–that dynamically distills and fine-tunes a space and compute-efficient verification model for verifying the corresponding service model while running inside a trusted execution environment. Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack. Fides also offers a re-classification functionality that predicts the original class whenever an attack is identified. We devised a generative adversarial network framework for training the attack detection and re-classification models. The evaluation shows that Fides achieves an accuracy of up to 98% for attack detection and 94% for re-classification. 
    more » « less
  3. Information-centric networking (ICN) replaces the widely used host-centric networking paradigm in communication networks (e.g., Internet and mobile ad hoc networks) with an information-centric paradigm, which prioritizes the delivery of named content, oblivious of the contents' origin. Content and client security, provenance, and identity privacy are intrinsic by design in the ICN paradigm as opposed to the current host centric paradigm where they have been instrumented as an afterthought. However, given its nascency, the ICN paradigm has several open security and privacy concerns. In this paper, we survey the existing literature in security and privacy in ICN and present open questions. More specifically, we explore three broad areas: 1) security threats; 2) privacy risks; and 3) access control enforcement mechanisms. We present the underlying principle of the existing works, discuss the drawbacks of the proposed approaches, and explore potential future research directions. In security, we review attack scenarios, such as denial of service, cache pollution, and content poisoning. In privacy, we discuss user privacy and anonymity, name and signature privacy, and content privacy. ICN's feature of ubiquitous caching introduces a major challenge for access control enforcement that requires special attention. We review existing access control mechanisms including encryption-based, attribute-based, session-based, and proxy re-encryption-based access control schemes. We conclude the survey with lessons learned and scope for future work. 
    more » « less
  4. Abstract—Current state-of-the-art object tracking methods have largely benefited from the public availability of numerous benchmark datasets. However, the focus has been on open-air imagery and much less on underwater visual data. Inherent underwater distortions, such as color loss, poor contrast, and underexposure, caused by attenuation of light, refraction, and scattering, greatly affect the visual quality of underwater data, and as such, existing open-air trackers perform less efficiently on such data. To help bridge this gap, this article proposes a first comprehensive underwater object tracking (UOT100) benchmark dataset to facilitate the development of tracking algorithms well-suited for underwater environments. The proposed dataset consists of 104 underwater video sequences and more than 74 000 annotated frames derived from both natural and artificial underwater videos, with great varieties of distortions. We benchmark the performance of 20 state-of-the-art object tracking algorithms and further introduce a cascaded residual network for underwater image enhancement model to improve tracking accuracy and success rate of trackers. Our experimental results demonstrate the shortcomings of existing tracking algorithms on underwater data and how our generative adversarial network (GAN)-based enhancement model can be used to improve tracking performance. We also evaluate the visual quality of our model’s output against existing GAN-based methods using well-accepted quality metrics and demonstrate that our model yields better visual data. Index Terms—Underwater benchmark dataset, underwater generative adversarial network (GAN), underwater image enhancement (UIE), underwater object tracking (UOT). 
    more » « less
  5. Abstract

    In this work, we explore multiplex graph (networks with different types of edges) generation with deep generative models. We discuss some of the challenges associated with multiplex graph generation that make it a more difficult problem than traditional graph generation. We propose TenGAN, the first neural network for multiplex graph generation, which greatly reduces the number of parameters required for multiplex graph generation. We also propose 3 different criteria for evaluating the quality of generated graphs: a graph-attribute-based, a classifier-based, and a tensor-based method. We evaluate its performance on 4 datasets and show that it generally performs better than other existing statistical multiplex graph generative models. We also adapt HGEN, an existing deep generative model for heterogeneous information networks, to work for multiplex graphs and show that our method generally performs better.

     
    more » « less