skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PS-FedGAN: An Efficient Federated Learning Framework with Strong Data Privacy
Federated Learning (FL) has emerged as an effective paradigm for distributed learning systems owing to its strong potential in exploiting underlying data characteristics while preserving data privacy. In cases of practical data heterogeneity among FL clients in many Internet-of-Things (IoT) applications over wireless networks, however, existing FL frameworks still face challenges in capturing the overall feature properties of local client data that often exhibit disparate distributions. One approach is to apply generative adversarial networks (GANs) in FL to address data heterogeneity by integrating GANs to regenerate anonymous training data without exposing original client data to possible eavesdropping. Despite some successes, existing GAN-based FL frameworks still incur high communication costs and elicit other privacy concerns, limiting their practical applications. To this end, this work proposes a novel FL framework that only applies partial GAN model sharing. This new PS-FedGAN framework effectively addresses heterogeneous data distributions across clients and strengthens privacy preservation at reduced communication costs, especially over wireless networks. Our analysis demonstrates the convergence and privacy benefits of the proposed PS-FEdGAN framework. Through experimental results based on several well-known benchmark datasets, our proposed PS-FedGAN demonstrates strong potential to tackle FL under heterogeneous (non-IID) client data distributions, while improving data privacy and lowering communication overhead.  more » « less
Award ID(s):
2029848 2332760 2029027 1934568
PAR ID:
10524811
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Internet of Things Journal
ISSN:
2372-2541
Page Range / eLocation ID:
1 to 1
Subject(s) / Keyword(s):
Federated Learning (FL), generative adversarial networks (GAN), heterogeneous users. machine learning, privacy.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Minimax optimization has seen a surge in interest with the advent of modern applications such as GANs, and it is inherently more challenging than simple minimization. The difficulty is exacerbated by the training data residing at multiple edge devices or clients, especially when these clients can have heterogeneous datasets and heterogeneous local computation capabilities. We propose a general federated minimax optimization framework that subsumes such settings and several existing methods like Local SGDA. We show that naive aggregation of model updates made by clients running unequal number of local steps can result in optimizing a mismatched objective function – a phenomenon previously observed in standard federated minimization. To fix this problem, we propose normalizing the client updates by the number of local steps. We analyze the convergence of the proposed algorithm for classes of nonconvex-concave and nonconvex-nonconcave functions and characterize the impact of heterogeneous client data, partial client participation, and heterogeneous local computations. For all the function classes considered, we significantly improve the existing computation and communication complexity results. Experimental results support our theoretical claims. 
    more » « less
  2. Federated learning (FL) enables multiple parties to collaboratively train machine learning models while preserving data privacy. However, securing communication within FL frameworks remains a significant challenge due to potential vulnerabilities to data breaches and integrity attacks. This paper proposes a novel approach using Dilithium, a robust digital signature framework, to enhance data security in FL. By integrating Dilithium into FL protocols, this study demonstrates robust communication security, preventing data tampering and unauthorized access, thereby promoting safer and more efficient collaborative model training across distributed networks. Furthermore, our approach incorporates an optimized client selection algorithm and a parallelized GPU-based training process that reduces latency and ensures seamless synchronization among participants. Experimental results demonstrate that our system achieves a total processing time of 6.891 seconds, significantly outperforming the 10.24 seconds of normal FL and 12.32 seconds of FL-Dilithium systems on the same computing platforms. Additionally, the proposed model achieves an accuracy of 94%, surpassing the 93% of the normal FL. 
    more » « less
  3. Federated Learning (FL) can be affected by data and device heterogeneities, caused by clients' different local data distributions and latencies in uploading model updates (i.e., staleness). Traditional schemes consider these heterogeneities as two separate and independent aspects, but this assumption is unrealistic in practical FL scenarios where these heterogeneities are intertwined. In these cases, traditional FL schemes are ineffective, and a better approach is to convert a stale model update into a unstale one. In this paper, we present a new FL framework that ensures the accuracy and computational efficiency of this conversion, hence effectively tackling the intertwined heterogeneities that may cause unlimited staleness in model updates. Our basic idea is to estimate the distributions of clients' local training data from their uploaded stale model updates, and use these estimations to compute unstale client model updates. In this way, our approach does not require any auxiliary dataset nor the clients' local models to be fully trained, and does not incur any additional computation or communication overhead at client devices. We compared our approach with the existing FL strategies on mainstream datasets and models, and showed that our approach can improve the trained model accuracy by up to 25% and reduce the number of required training epochs by up to 35%. 
    more » « less
  4. Li, R; Chowdhury, K (Ed.)
    Federated Learning (FL) enables model training across decentralized clients while preserving data privacy. However, bandwidth constraints limit the volume of information exchanged, making communication efficiency a critical challenge. In addition, non- IID data distributions require fairness-aware mechanisms to prevent performance degradation for certain clients. Existing sparsification techniques often apply fixed compression ratios uniformly, ignoring variations in client importance and bandwidth. We propose FedBand, a dynamic bandwidth allocation framework that prioritizes clients based on their contribution to the global model. Unlike conventional approaches, FedBand does not enforce uniform client participation in every communication round. Instead, it allocates more bandwidth to clients whose local updates deviate significantly from the global model, enabling them to transmit a greater number of parameters. Clients with less impactful updates contribute proportionally less or may defer transmission, reducing unnecessary overhead while maintaining generalizability. By optimizing the trade-off between communication efficiency and learning performance, FedBand substantially reduces transmission costs while preserving model accuracy. Experiments on non-IID CIFAR-10 and UTMobileNet2021 datasets, demonstrate that FedBand achieves up to 99.81% bandwidth savings per round while maintaining accuracies close to that of an unsparsified model (80% on CIFAR- 10, 95% on UTMobileNet), despite transmitting less than 1% of the model parameters in each round. Moreover, FedBand accelerates convergence by 37.4%, further improving learning efficiency under bandwidth constraints. Mininet emulations further show a 42.6% reduction in communication costs and a 65.57% acceleration in convergence compared to baseline methods, validating its real-world efficiency. These results demonstrate that adaptive bandwidth allocation can significantly enhance the scalability and communication efficiency of federated learning, making it more viable for real- world, bandwidth-constrained networking environments. 
    more » « less
  5. In this paper, we focus on the important yet understudied problem of Continual Federated Learning (CFL), where a server communicates with a set of clients to incrementally learn new concepts over time without sharing or storing any data. The complexity of this problem is compounded by challenges from both the Continual and Federated Learning perspectives. Specifically, models trained in a CFL setup suffer from catastrophic forgetting which is exacerbated by data heterogeneity across clients. Existing attempts at this problem tend to impose large overheads on clients and communication channels or require access to stored data which renders them unsuitable for real-world use due to privacy. In this paper, we attempt to tackle forgetting and heterogeneity while minimizing overhead costs and without requiring access to any stored data. We study this problem in the context of Vision Transformers and explore parameter-efficient approaches to adapt to dynamic distributions while minimizing forgetting. We achieve this by leveraging a prompting based approach (such that only prompts and classifier heads have to be communicated) and proposing a novel and lightweight generation and distillation scheme to consolidate client models at the server. We formulate this problem for image classification and establish strong baselines for comparison, conduct experiments on CIFAR-100 as well as challenging, large-scale datasets like ImageNet-R and DomainNet. Our approach outperforms both existing methods and our own baselines by as much as 7% while significantly reducing communication and client-level computation costs. Code available at https://github.com/shaunak27/hepco-fed. 
    more » « less