skip to main content


Title: Electronic structure of (MePh 3 P) 2 [Ni II (bdtCl 2 ) 2 ]·2(CH 3 ) 2 SO and (MePh 3 P)[Ni III (bdtCl 2 ) 2 ] (bdtCl 2 = 3,6-dichlorobenzene-1,2-dithiolate)
High-resolution X-ray diffraction experiments, theoretical calculations and atom-specific X-ray absorption experiments were used to investigate two nickel complexes, (MePh 3 P) 2 [Ni II (bdtCl 2 ) 2 ]·2(CH 3 ) 2 SO [complex (1)] and (MePh 3 P)[Ni III (bdtCl 2 ) 2 ] [complex (2)]. Combining the techniques of nickel K - and sulfur K -edge X-ray absorption spectroscopy with high-resolution X-ray charge density modeling, together with theoretical calculations, the actual oxidation states of the central Ni atoms in these two complexes are investigated. Ni ions in two complexes are clearly in different oxidation states: the Ni ion of complex (1) is formally Ni II ; that of complex (2) should be formally Ni III , yet it is best described as a combination of Ni 2+ and Ni 3+ , due to the involvement of the non-innocent ligand in the Ni— L bond. A detailed description of Ni—S bond character (σ,π) is presented.  more » « less
Award ID(s):
1834750
NSF-PAR ID:
10315718
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials
Volume:
77
Issue:
6
ISSN:
2052-5206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nickel K- and L 2,3 -edge X-ray absorption spectra (XAS) are discussed for 16 complexes and complex ions with nickel centers spanning a range of formal oxidation states from II to IV. K-edge XAS alone is shown to be an ambiguous metric of physical oxidation state for these Ni complexes. Meanwhile, L 2,3 -edge XAS reveals that the physical d-counts of the formally Ni IV compounds measured lie well above the d 6 count implied by the oxidation state formalism. The generality of this phenomenon is explored computationally by scrutinizing 8 additional complexes. The extreme case of NiF 6 2− is considered using high-level molecular orbital approaches as well as advanced valence bond methods. The emergent electronic structure picture reveals that even highly electronegative F-donors are incapable of supporting a physical d 6 Ni IV center. The reactivity of Ni IV complexes is then discussed, highlighting the dominant role of the ligands in this chemistry over that of the metal centers. 
    more » « less
  2. Abstract

    Understanding the electronic structures of high‐valent metal complexes aids the advancement of metal‐catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3)4](1), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of1by X‐ray spectroscopies have led previous authors to contradictory conclusions, motivating the re‐examination of its X‐ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including1, here it is shown that there is a systematic trifluoromethyl effect on X‐ray absorption that blue shifts the resonant Cu K‐edge energy by 2–3 eV per CF3, completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like1and formally Cu(I) complexes like (Ph3P)3CuCF3(3). Thus, in agreement with the inverted ligand field model, the data presented herein imply that1is best described as containing a Cu(I) ion with dncount approaching 10.

     
    more » « less
  3. Abstract

    Understanding the electronic structures of high‐valent metal complexes aids the advancement of metal‐catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3)4](1), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of1by X‐ray spectroscopies have led previous authors to contradictory conclusions, motivating the re‐examination of its X‐ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including1, here it is shown that there is a systematic trifluoromethyl effect on X‐ray absorption that blue shifts the resonant Cu K‐edge energy by 2–3 eV per CF3, completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like1and formally Cu(I) complexes like (Ph3P)3CuCF3(3). Thus, in agreement with the inverted ligand field model, the data presented herein imply that1is best described as containing a Cu(I) ion with dncount approaching 10.

     
    more » « less
  4. The synthesis of previously unknown bis(cyclopentadienyl) complexes of the first transition metal, i.e., Sc(II) scandocene complexes, has been investigated using C5H2(tBu)3 (Cpttt), C5Me5 (Cp*), and C5H3(SiMe3)2 (Cp″) ligands. Cpttt 2ScI, 1, formed from ScI3 and KCpttt, can be reduced with potassium graphite (KC8) in hexanes to generate dark-red crystals of the first crystallographically characterizable bis(cyclopentadienyl) scandium(II) complex, Cpttt 2Sc, 2. Complex 2 has a 170.6° (ring centroid)-Sc-(ring centroid) angle and exhibits an eight-line EPR spectrum characteristic of Sc(II) with Aiso = 82.6 MHz (29.6 G). It sublimes at 200 °C at 10−4 Torr and has a melting point of 268−271 °C. Reductions of Cp*2ScI and Cp″2ScI under analogous conditions in hexanes did not provide new Sc(II) complexes, and reduction of Cp*2ScI in benzene formed the Sc(III) phenyl complex, Cp*2Sc(C6H5), 3, by C−H bond activation. However, in Et2O and toluene, reduction of Cp*2ScI at −78 °C gives a dark-red solution, 4, which displays an eight-line EPR pattern like that of 1, but it did not provide thermally stable crystals. Reduction of Cp″2ScI, in THF or Et2O at −35 °C in the presence of 2.2.2-cryptand, yields the green Sc(II) metallocene iodide complex, [K(crypt)][Cp″2ScI], 5, which was identified by X-ray crystallography and EPR spectroscopy and is thermally unstable. The analogous reaction of Cp*2ScI with KC8 and 18-crown-6 in Et2O gave the ligand redistribution product, [Cp*2Sc(18- crown-6-κ2O,O′)][Cp*2ScI2], 6, as the only crystalline product. Density functional theory 
    more » « less
  5. null (Ed.)
    The use of radical bridging ligands to facilitate strong magnetic exchange between paramagnetic metal centers represents a key step toward the realization of single-molecule magnets with high operating temperatures. Moreover, bridging ligands that allow the incorporation of high-anisotropy metal ions are particularly advantageous. Toward these ends, we report the synthesis and detailed characterization of the dinuclear hydroquinone-bridged complexes [(Me 6 tren) 2 MII2(C 6 H 4 O 2 2− )] 2+ (Me 6 tren = tris(2-dimethylaminoethyl)amine; M = Fe, Co, Ni) and their one-electron-oxidized, semiquinone-bridged analogues [(Me 6 tren) 2 MII2(C 6 H 4 O 2 − ˙)] 3+ . Single-crystal X-ray diffraction shows that the Me 6 tren ligand restrains the metal centers in a trigonal bipyramidal geometry, and coordination of the bridging hydro- or semiquinone ligand results in a parallel alignment of the three-fold axes. We quantify the p -benzosemiquinone–transition metal magnetic exchange coupling for the first time and find that the nickel( ii ) complex exhibits a substantial J < −600 cm −1 , resulting in a well-isolated S = 3/2 ground state even as high as 300 K. The iron and cobalt complexes feature metal–semiquinone exchange constants of J = −144(1) and −252(2) cm −1 , respectively, which are substantially larger in magnitude than those reported for related bis(bidentate) semiquinoid complexes. Finally, the semiquinone-bridged cobalt and nickel complexes exhibit field-induced slow magnetic relaxation, with relaxation barriers of U eff = 22 and 46 cm −1 , respectively. Remarkably, the Orbach relaxation observed for the Ni complex is in stark contrast to the fast processes that dominate relaxation in related mononuclear Ni II complexes, thus demonstrating that strong magnetic coupling can engender slow magnetic relaxation. 
    more » « less