Wireless systems which can simultaneously transmit and receive (STAR) are gaining significant academic and commercial interest due to their wide range of applications such as full-duplex (FD) wireless communication and FMCW radar. FD radios, where the transmitter (TX) and the receiver (RX) operate simultaneously at the same frequency, can potentially double the data rate at the physical layer and can provide many other advantages in the higher layers. The antenna interface of an FD radio is typically built using a multi-antenna system, or a single antenna through a bulky magnetic circulator or a lossy reciprocal hybrid. However, recent advances in CMOS-integrated circulators through spatio-temporal conductivity modulation have shown promise and potential to replace traditional bulky magnetic circulators. However, unlike magnetic circulators, CMOS-integrated non-magnetic circulators will introduce some nonlinear distortion and spurious tones arising from their clock circuitry. In this work, we present an FD radio using a highly linear CMOS integrable circulator, a frequency-flat RF canceler, and a USRP software-defined radio (SDR). At TX power level of +15 dBm, the implemented FD radio achieves a self-interference cancellation (SIC) of +55 dB from the circulator and RF canceler in the RF domain, and an overall SIC of +95 dB together withmore »
An Experiment-Based Comparison between Fully Digital and Hybrid Beamforming Radio Architectures for Many-Antenna Full-Duplex Wireless Communication
Full-duplex (FD) communication in many-antenna base stations (BSs) is hampered by self-interference (SI). This is because a FD node’s transmitting signal generates significant interference to its own receiver. Recent works have shown that it is possible to reduce/eliminate this SI in fully digital many-antenna systems, e.g., through transmit beamforming by using some spatial degrees of freedom to reduce SI instead of increasing the beamforming gain. On a parallel front, hybrid beamforming has recently emerged as a radio architecture that uses multiple antennas per FR chain. This can significantly reduce the cost of the end device (e.g., BS) but may also reduce the capacity or SI reduction gains of a fully digital radio system. This is because a fully digital radio architecture can change both the amplitude and phase of the wireless signal and send different data streams from each antenna element. Our goal in this paper is to quantify the performance gap between these two radio architectures in terms of SI cancellation and system capacity, particularly in multi-user MIMO setups. To do so, we experimentally compare the performance of a state-of-the-art fully digital many antenna FD solution to a hybrid beamforming architecture and compare the corresponding performance metrics leveraging a more »
- Publication Date:
- NSF-PAR ID:
- 10315825
- Journal Name:
- Electronics
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2079-9292
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Full-duplex (FD) wireless is an emerging wireless communication paradigm where the transmitter and the receiver operate simultaneously at the same frequency. One major challenge in realizing FD wireless is the interference of the TX signal saturating the receiver, commonly referred to self-interference (SI). Traditionally, self-interference cancellation (SIC) is achieved in the antenna, RF/analog, and digital domains. In the antenna domain, SIC can be achieved using a pair of separate TX and RX antennas, or using a single antenna shared by the TX and RX through a magnetic circulator, which is usually bulky, expensive, and not integrable with CMOS. Recent advances, however, have shown the feasibility of realizing high-performance non-reciprocal circulators in CMOS based on spatio-temporal modulation. In this work, we demonstrate a high power handling FD radio using a USRP SDR which employs SIC (i) at the antenna interface using a watt-level power-handling CMOS integrated, magnetic-free circulator, (ii) in the RF domain using a compact RF canceler, and (iii) in the digital domain. Our prototyped FD radio achieves +95 dB overall SIC at +15dBm TX power level. We analyze the effects of the circulator TX-RX non-linearity on the total achievable SIC
-
Full-duplex (FD) wireless is an emerging wireless communication paradigm where the transmitter and the receiver operate simultaneously at the same frequency. One major challenge in realizing FD wireless is the interference of the TX signal saturating the receiver, commonly referred to self-interference (SI). Traditionally, self-interference cancellation (SIC) is achieved in the antenna, RF/analog, and digital domains. In the antenna domain, SIC can be achieved using a pair of separate TX and RX antennas, or using a single antenna shared by the TX and RX through a magnetic circulator, which is usually bulky, expensive, and not integrable with CMOS. Recent advances, however, have shown the feasibility of realizing high-performance non-reciprocal circulators in CMOS based on spatio-temporal modulation. In this work, we demonstrate a high power handling FD radio using a USRP SDR which employs SIC (i) at the antenna interface using a watt-level power-handling CMOS integrated, magnetic-free circulator, (ii) in the RF domain using a compact RF canceler, and (iii) in the digital domain. Our prototyped FD radio achieves +95 dB overall SIC at +15dBm TX power level. We analyze the effects of the circulator TX-RX non-linearity on the total achievable SIC.
-
Wireless systems which can simultaneously transmit and receive (STAR) are gaining significant academic and commercial interest due to their wide range of applications such as full-duplex (FD) wireless communication and FMCW radar. FD radios, where the transmitter (TX) and the receiver (RX) operate simultaneously at the same frequency, can potentially double the data rate at the physical layer and can provide many other advantages in the higher layers. The antenna interface of an FD radio is typically built using a multi-antenna system, or a single antenna through a bulky magnetic circulator or a lossy reciprocal hybrid. However, recent advances in CMOS-integrated circulators through spatio-temporal conductivity modulation have shown promise and potential to replace traditional bulky magnetic circulators. However, unlike magnetic circulators, CMOS-integrated non-magnetic circulators will introduce some nonlinear distortion and spurious tones arising from their clock circuitry. In this work, we present an FD radio using a highly linear CMOS integrable circulator, a frequency-flat RF canceler, and a USRP software-defined radio (SDR). At TX power level of +15 dBm, the implemented FD radio achieves a self-interference cancellation (SIC) of +55dB from the circulator and RF canceler in the RF domain, and an overall SIC of +95dB together with SIC inmore »
-
Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distributionmore »