Time to pay attention to attention: using attention-based process traces to better understand consumer decision-making
- Award ID(s):
- 1847794
- PAR ID:
- 10315840
- Date Published:
- Journal Name:
- Marketing Letters
- Volume:
- 31
- Issue:
- 4
- ISSN:
- 0923-0645
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Feature-based attention is known to enhance visual processing globally across the visual field, even at task-irrelevant locations. Here, we asked whether attention to object categories, in particular faces, shows similar location-independent tuning. Using EEG, we measured the face-selective N170 component of the EEG signal to examine neural responses to faces at task-irrelevant locations while participants attended to faces at another task-relevant location. Across two experiments, we found that visual processing of faces was amplified at task-irrelevant locations when participants attended to faces relative to when participants attended to either buildings or scrambled face parts. The fact that we see this enhancement with the N170 suggests that these attentional effects occur at the earliest stage of face processing. Two additional behavioral experiments showed that it is easier to attend to the same object category across the visual field relative to two distinct categories, consistent with object-based attention spreading globally. Together, these results suggest that attention to high-level object categories shows similar spatially global effects on visual processing as attention to simple, individual, low-level features.more » « less
-
In recent years, face recognition systems have achieved exceptional success due to promising advances in deep learning architectures. However, they still fail to achieve the expected accuracy when matching profile images against a gallery of frontal images. Current approaches either perform pose normalization (i.e., frontalization) or disentangle pose information for face recognition. We instead propose a new approach to utilize pose as auxiliary information via an attention mechanism. In this paper, we hypothesize that pose-attended information using an attention mechanism can guide contextual and distinctive feature extraction from profile faces, which further benefits better representation learning in an embedded domain. To achieve this, first, we design a unified coupled profile-to-frontal face recognition network. It learns the mapping from faces to a compact embedding subspace via a class-specific contrastive loss. Second, we develop a novel pose attention block (PAB) to specially guide the pose-agnostic feature extraction from profile faces. To be more specific, PAB is designed to explicitly help the network to focus on important features along both “channel” and “spatial” dimensions while learning discriminative yet pose-invariant features in an embedding subspace. To validate the effectiveness of our proposed method, we conduct experiments on both controlled and in the- wild benchmarks including Multi-PIE, CFP, and IJB-C, and show superiority over the state-of-the-art.more » « less