skip to main content


Title: Improving Channel Charting using a Split Triplet Loss and an Inertial Regularizer
Channel charting is an emerging technology that enables self-supervised pseudo-localization of user equipments by performing dimensionality reduction on large channel-state information (CSI) databases that are passively collected at infrastructure base stations or access points. In this paper, we introduce a new dimensionality reduction method specifically designed for channel charting using a novel split triplet loss, which utilizes physical information available during the CSI acquisition process. In addition, we propose a novel regularizer that exploits the physical concept of inertia, which significantly improves the quality of the learned channel charts. We provide an experimental verification of our methods using synthetic and real-world measured CSI datasets, and we demonstrate that our methods are able to outperform the state-of-the-art in channel charting based on the triplet loss.  more » « less
Award ID(s):
1717559
NSF-PAR ID:
10315889
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
17th International Symposium on Wireless Communication Systems (ISWCS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Channel charting (CC) has been proposed recently to enable logical positioning of user equipments (UEs) in the neighborhood of a multi-antenna base-station solely from channel-state information (CSI). CC relies on dimensionality reduction of high-dimensional CSI features in order to construct a channel chart that captures spatial and radio geometries so that UEs close in space are close in the channel chart. In this paper, we demonstrate that autoencoder (AE)-based CC can be augmented with side information that is obtained during the CSI acquisition process. More specifically, we propose to include pairwise representation constraints into AEs with the goal of improving the quality of the learned channel charts. We show that such representation-constrained AEs recover the global geometry of the learned channel charts, which enables CC to perform approximate positioning without global navigation satellite systems or supervised learning methods that rely on extensive and expensive measurement campaigns. 
    more » « less
  2. Abstract We consider a multipoint channel charting (MPCC) algorithm for radio resource management (RRM) in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication systems. A massive MIMO (mMIMO) infrastructure network performs logical localization of vehicles to a MPCC, based on V2I communication signals. Combining logical distances given by channel charting with V2V measurements, the network trains a function to predict the quality of a direct V2V communication link from observed V2I communication signals. In MPCC, the network uses machine learning techniques to learn a logical radio map from V2I channel state information (CSI) samples transmitted from unknown locations. The network extracts CSI features, constructs a dissimilarity matrix between CSI samples, and performs dimensional reduction of the CSI feature space. Here, we use Laplacian Eigenmaps (LE) for dimensional reduction. The resulting MPCC is a two-dimensional map where the spatial distance between a pair of vehicles is closely approximated by the distance in the MPCC. In addition to V2I CSI, the network acquires V2V channel quality information for vehicles in the training set and develops a link quality predictor. MPCC provides a mapping for any vehicle location in the training set. To use MPCC for cognitive RRM of V2I and V2V communications, network management has to find logical MPCC locations for vehicles not in the training set, based on newly acquired V2I CSI measurements. For this, we develop an extension of LE-based MPCC to out-of-sample CSI samples. We evaluate the performance of link quality prediction for V2V communications in a mMIMO millimeter-wave scenario, in terms of the relative error of the predicted outage probability. 
    more » « less
  3. We present a novel framework for collaboration amongst a team of robots performing Pose Graph Optimization (PGO) that addresses two important challenges for multi-robot SLAM: i) that of enabling information exchange "on-demand" via Active Rendezvous without using a map or the robot's location, and ii) that of rejecting outlying measurements. Our key insight is to exploit relative position data present in the communication channel between robots to improve groundtruth accuracy of PGO. We develop an algorithmic and experimental framework for integrating Channel State Information (CSI) with multi-robot PGO; it is distributed, and applicable in low-lighting or featureless environments where traditional sensors often fail. We present extensive experimental results on actual robots and observe that using Active Rendezvous results in a 64% reduction in ground truth pose error and that using CSI observations to aid outlier rejection reduces ground truth pose error by 32%. These results show the potential of integrating communication as a novel sensor for SLAM. 
    more » « less
  4. null (Ed.)
    Abstract—The emergence of remote sensing technologies cou- pled with local monitoring workstations enables us the un- precedented ability to monitor the environment in large scale. Information mining from multi-channel geo-spatiotemporal data however poses great challenges to many computational sustainability applications. Most existing approaches adopt various dimensionality reduction techniques without fully taking advantage of the spatiotemporal nature of the data. In addition, the lack of labeled training data raises another challenge for modeling such data. In this work, we propose a novel semi-supervised attention-based deep representation model that learns context-aware spatiotemporal representations for prediction tasks. A combination of convolutional neural networks with a hybrid attention mechanism is adopted to extract spatial and temporal variations in the geo-spatiotemporal data. Recognizing the importance of capturing more complete temporal dependencies, we propose the hybrid attention mechanism which integrates a learnable global query into the classic self-attention mechanism. To overcome the data scarcity issue, sampled spatial and temporal context that naturally reside in the largely-available unlabeled geo-spatiotemporal data are exploited to aid meaningful representation learning. We conduct experiments on a large-scale real-world crop yield prediction task. The results show that our methods significantly outperforms existing state-of-the-art yield prediction methods, especially under the stress of training data scarcity. 
    more » « less
  5. null (Ed.)
    Channel state information (CSI) plays a vital role in scheduling and capacity-approaching transmission optimization of massive MIMO communication systems. In frequency division duplex (FDD) MIMO systems, forward link CSI reconstruction at transmitter relies on CSI feedback from receiving nodes and must carefully weigh the tradeoff between reconstruction accuracy and feedback bandwidth. Recent application of recurrent neural networks (RNN) has demonstrated promising results of massive MIMO CSI feedback compression. However, the cost of computation and memory associated with RNN deep learning remains high. In this work, we exploit channel temporal coherence to improve learning accuracy and feedback efficiency. Leveraging a Markovian model, we develop a deep convolutional neural network (CNN)-based framework called MarkovNet to efficiently encode CSI feedback to improve accuracy and efficiency. We explore important physical insights including spherical normalization of input data and deep learning network optimizations in feedback compression. We demonstrate that MarkovNet provides a substantial performance improvement and computational complexity reduction over the RNN-based work.We demonstrate MarkovNet’s performance under different MIMO configurations and for a range of feedback intervals and rates. CSI recovery with MarkovNet outperforms RNN-based CSI estimation with only a fraction of computational cost. 
    more » « less