skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multipoint channel charting-based radio resource management for V2V communications
Abstract We consider a multipoint channel charting (MPCC) algorithm for radio resource management (RRM) in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication systems. A massive MIMO (mMIMO) infrastructure network performs logical localization of vehicles to a MPCC, based on V2I communication signals. Combining logical distances given by channel charting with V2V measurements, the network trains a function to predict the quality of a direct V2V communication link from observed V2I communication signals. In MPCC, the network uses machine learning techniques to learn a logical radio map from V2I channel state information (CSI) samples transmitted from unknown locations. The network extracts CSI features, constructs a dissimilarity matrix between CSI samples, and performs dimensional reduction of the CSI feature space. Here, we use Laplacian Eigenmaps (LE) for dimensional reduction. The resulting MPCC is a two-dimensional map where the spatial distance between a pair of vehicles is closely approximated by the distance in the MPCC. In addition to V2I CSI, the network acquires V2V channel quality information for vehicles in the training set and develops a link quality predictor. MPCC provides a mapping for any vehicle location in the training set. To use MPCC for cognitive RRM of V2I and V2V communications, network management has to find logical MPCC locations for vehicles not in the training set, based on newly acquired V2I CSI measurements. For this, we develop an extension of LE-based MPCC to out-of-sample CSI samples. We evaluate the performance of link quality prediction for V2V communications in a mMIMO millimeter-wave scenario, in terms of the relative error of the predicted outage probability.  more » « less
Award ID(s):
1717559
PAR ID:
10315891
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
EURASIP Journal on Wireless Communications and Networking
Volume:
2020
Issue:
1
ISSN:
1687-1499
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper investigates the resource allocation problem in device-to-device (D2D)-based vehicular communications, based on slow fading statistics of channel state information (CSI), to alleviate signaling overhead for reporting rapidly varying accurate CSI of mobile links. We consider the case when each vehicle-to-infrastructure (V2I) link shares spectrum with multiple vehicle-to-vehicle (V2V) links. Leveraging the slow fading statistical CSI of mobile links, we maximize the sum V2I capacity while guaranteeing the reliability of all V2V links. We propose a graph- based algorithm that uses graph partitioning tools to divide highly interfering V2V links into different clusters before formulating the spectrum sharing problem as a weighted 3-dimensional matching problem, which is then solved through adapting a high-performance approximation algorithm. 
    more » « less
  2. The integration of sub-6 GHz and millimeter wave (mmWave) bands has a great potential to enable both reliable coverage and high data rate in future vehicular networks. Nevertheless, during mmWave vehicle-to-infrastructure (V2I) handovers, the coverage blindness of directional beams makes it a significant challenge to discover target mmWave remote radio units (mmW-RRUs) whose active beams may radiate somewhere that handover vehicles are not in. Besides, fast and soft handovers are also urgently needed in vehicular networks. Based on these observations, to solve the target discovery problem, we utilize channel state information (CSI) of sub-6 GHz bands and Kernel-based machine learning (ML) algorithms to predict vehicles’ positions and then use them to pre-activate target mmW-RRUs. Considering that the regular movement of vehicles on almost linearly paved roads with finite corner turns will generate some regularity in handovers, to accelerate handovers, we propose to use historical handover data and K-nearest neighbor (KNN) ML algorithms to predict handover decisions without involving time-consuming target selection and beam training processes. To achieve soft handovers, we propose to employ vehicle-to-vehicle (V2V) connections to forward data for V2I links. Theoretical and simulation results are provided to validate the feasibility of the proposed schemes. 
    more » « less
  3. Beamforming techniques are considered as essential parts to compensate severe path losses in millimeter-wave (mmWave) communications. In particular, these techniques adopt large antenna arrays and formulate narrow beams to obtain satisfactory received powers. However, performing accurate beam alignment over narrow beams for efficient link configuration by traditional standard defined beam selection approaches, which mainly rely on channel state information and beam sweeping through exhaustive searching, imposes computational and communications overheads. And, such resulting overheads limit their potential use in vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications involving highly dynamic scenarios. In comparison, utilizing out-of-band contextual information, such as sensing data obtained from sensor devices, provides a better alternative to reduce overheads. This paper presents a deep learning-based solution for utilizing the multi-modality sensing data for predicting the optimal beams having sufficient mmWave received powers so that the best V2I and V2V line-of-sight links can be ensured proactively. The proposed solution has been tested on real-world measured mmWave sensing and communication data, and the results show that it can achieve up to 98.19% accuracies while predicting top-13 beams. Correspondingly, when compared to existing been sweeping approach, the beam sweeping searching space and time overheads are greatly shortened roughly by 79.67% and 91.89%, respectively which confirm a promising solution for beamforming in mmWave enabled communications. 
    more » « less
  4. Channel charting (CC) has been proposed recently to enable logical positioning of user equipments (UEs) in the neighborhood of a multi-antenna base-station solely from channel-state information (CSI). CC relies on dimensionality reduction of high-dimensional CSI features in order to construct a channel chart that captures spatial and radio geometries so that UEs close in space are close in the channel chart. In this paper, we demonstrate that autoencoder (AE)-based CC can be augmented with side information that is obtained during the CSI acquisition process. More specifically, we propose to include pairwise representation constraints into AEs with the goal of improving the quality of the learned channel charts. We show that such representation-constrained AEs recover the global geometry of the learned channel charts, which enables CC to perform approximate positioning without global navigation satellite systems or supervised learning methods that rely on extensive and expensive measurement campaigns. 
    more » « less
  5. null (Ed.)
    Internet of Vehicles (IoV) in 5G is regarded as a backbone for intelligent transportation system in smart city, where vehicles are expected to communicate with drivers, with road-side wireless infrastructure, with other vehicles, with traffic signals and different city infrastructure using vehicle-to-vehicle (V2V) and/or vehicle-to-infrastructure (V2I) communications. In IoV, the network topology changes based on drivers' destination, intent or vehicles' movements and road structure on which the vehicles travel. In IoV, vehicles are assumed to be equipped with computing devices to process data, storage devices to store data and communication devices to communicate with other vehicles or with roadside infrastructure (RSI). It is vital to authenticate data in IoV to make sure that legitimate data is being propagated in IoV. Thus, security stands as a vital factor in IoV. The existing literature contains some limitations for robust security in IoV such as high delay introduced by security algorithms, security without privacy, unreliable security and reduced overall communication efficiency. To address these issues, this paper proposes the Elliptic Curve Cryptography (ECC) based Ant Colony Optimization Ad hoc On-demand Distance Vector (ACO-AODV) routing protocol which avoids suspicious vehicles during message dissemination in IoV. Specifically, our proposed protocol comprises three components: i) certificate authority (CA) which maps vehicle's publicly available info such as number plates with cryptographic keys using ECC; ii) malicious vehicle (MV) detection algorithm which works based on trust level calculated using status message interactions; and iii) secure optimal path selection in an adaptive manner based on the intent of communications using ACO-AODV that avoids malicious vehicles. Experimental results illustrate that the proposed approach provides better results than the existing approaches. 
    more » « less