skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Putting Gradual Types to Work
In this paper, we describe our experience incorporating gradual types in a statically typed functional language with Hindley-Milner style type inference. Where most gradually typed systems aim to improve static checking in a dynamically typed language, we approach it from the opposite perspective and promote dynamic checking in a statically typed language. Our approach provides a glimpse into how languages like SML and OCaml might handle gradual typing. We discuss our implementation and challenges faced—specifically how gradual typing rules apply to our representation of composite and recursive types. We review the various implementations that add dynamic typing to a statically typed language in order to highlight the different ways of mixing static and dynamic typing and examine possible inspirations while maintaining the gradual nature of our type system. This paper also discusses our motivation for adding gradual types to our language, and the practical benefits of doing so in our industrial setting.  more » « less
Award ID(s):
1749539
PAR ID:
10315909
Author(s) / Creator(s):
; ;
Editor(s):
Morales, J.F.; Orchard, D.
Date Published:
Journal Name:
Practical Aspects of Declarative Languages
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chin, WN; Xu, Z (Ed.)
    Static typing and dynamic typing have respective strengths and weaknesses, and a language often commits to one typing discipline and inherits the qualities, good or bad. Gradual typing has been developed to reconcile these typing disciplines, allowing a single program to mix both static and dynamic typing. It protects soundness of typed regions with runtime checks when values flown into them do not have required static types. One issue with gradual typing is that such checks can incur significant performance overhead. Previous work on performance has focused on coarse-grained gradual typing where each module (file) has to be fully typed or untyped. In contrast, the performance of fine-grained gradual typing where each single parameter can be partially-typed (such as specifying the parameter as a list without giving element type) has not been investigated. Motivated by this situation, this paper systematically investigates performance of fine-grained gradual typing by studying the performance of more than 1 million programs. These programs are drawn from seven commonly-used benchmarks with different types for parameters: some parameters are untyped, some are statically typed, and others are partially statically typed. The paper observes many interesting phenomena that were previously unknown to the research community. They provide insights into future research directions of understanding, predicting, and optimizing gradual typing performance as well as migrating gradual programs towards more static 
    more » « less
  2. Abstract Gradual typing allows programs to enjoy the benefits of both static typing and dynamic typing. While it is often desirable to migrate a program from more dynamically typed to more statically typed or vice versa, gradual typing itself does not provide a way to facilitate this migration. This places the burden on programmers who have to manually add or remove type annotations. Besides the general challenge of adding type annotations to dynamically typed code, there are subtle interactions between these annotations in gradually typed code that exacerbate the situation. For example, to migrate a program to be as static as possible, in general, all possible combinations of adding or removing type annotations from parameters must be tried out and compared. In this paper, we address this problem by developing migrational typing , which efficiently types all possible ways of replacing dynamic types with fully static types for a gradually typed program. The typing result supports automatically migrating a program to be as static as possible or introducing the least number of dynamic types necessary to remove a type error. The approach can be extended to support user-defined criteria about which annotations to modify. We have implemented migrational typing and evaluated it on large programs. The results show that migrational typing scales linearly with the size of the program and takes only 2–4 times longer than plain gradual typing. 
    more » « less
  3. null (Ed.)
    Abstract Gradually typed languages are designed to support both dynamically typed and statically typed programming styles while preserving the benefits of each. Sound gradually typed languages dynamically check types at runtime at the boundary between statically typed and dynamically typed modules. However, there is much disagreement in the gradual typing literature over how to enforce complex types such as tuples, lists, functions and objects. In this paper, we propose a new perspective on the design of runtime gradual type enforcement: runtime type casts exist precisely to ensure the correctness of certain type-based refactorings and optimizations. For instance, for simple types, a language designer might desire that beta-eta equality is valid. We show that this perspective is useful by demonstrating that a cast semantics can be derived from beta-eta equality. We do this by providing an axiomatic account program equivalence in a gradual cast calculus in a logic we call gradual type theory (GTT). Based on Levy’s call-by-push-value, GTT allows us to axiomatize both call-by-value and call-by-name gradual languages. We then show that we can derive the behavior of casts for simple types from the corresponding eta equality principle and the assumption that the language satisfies a property called graduality , also known as the dynamic gradual guarantee. Since we can derive the semantics from the assumption of eta equality, we also receive a useful contrapositive: any observably different cast semantics that satisfies graduality must violate the eta equality. We show the consistency and applicability of our axiomatic theory by proving that a contract-based implementation using the lazy cast semantics gives a logical relations model of our type theory, where equivalence in GTT implies contextual equivalence of the programs. Since GTT also axiomatizes the dynamic gradual guarantee, our model also establishes this central theorem of gradual typing. The model is parameterized by the implementation of the dynamic types, and so gives a family of implementations that validate type-based optimization and the gradual guarantee. 
    more » « less
  4. In gradual typing, different languages perform different dynamic type checks for the same program even though the languages have the same static type system. This raises the question of whether, given a gradually typed language, the combination of the translation that injects checks in well-typed terms and the dynamic semantics that determines their behavior sufficiently enforce the static type system of the language. Neither type soundness, nor complete monitoring, nor any other meta-theoretic property of gradually typed languages to date provides a satisfying answer. In response, we present vigilance, a semantic analytical instrument that defines when the check-injecting translation and dynamic semantics of a gradually typed language are adequate for its static type system. Technically, vigilance asks if a given translation-and-semantics combination enforces the complete run-time typing history of a value, which consists of all of the types associated with the value. We show that the standard combination for so-called Natural gradual typing is vigilant for the standard simple type system, but the standard combination for Transient gradual typing is not. At the same time, the standard combination for Transient is vigilant for a tag type system but the standard combination for Natural is not. Hence, we clarify the comparative type-level reasoning power between the two most studied approaches to sound gradual typing. Furthermore, as an exercise that demonstrates how vigilance can guide design, we introduce and examine a new theoretical static gradual type system, dubbed truer, that is stronger than tag typing and more faithfully reflects the type-level reasoning power that the dynamic semantics of Transient gradual typing can guarantee. 
    more » « less
  5. Gradual typing allows programmers to use both static and dynamic typing in a single program. However, a well-known problem with sound gradual typing is that the interactions between static and dynamic code can cause significant performance degradation. These performance pitfalls are hard to predict and resolve, and discourage users from using gradual typing features. For example, when migrating to a more statically typed program, often adding a type annotation will trigger a slowdown that can be resolved by adding more annotations elsewhere, but since it is not clear where the additional annotations must be added, the easier solution is to simply remove the annotation. To address these problems, we develop: (1) a static cost semantics that accurately predicts the overhead of static-dynamic interactions in a gradually typed program, (2) a technique for efficiently inferring such costs for all combinations of inferrable type assignments in a program, and (3) a method for translating the results of this analysis into specific recommendations and explanations that can help programmers understand, debug, and optimize the performance of gradually typed programs. We have implemented our approach in Herder, a tool for statically analyzing the performance of different typing configurations for Reticulated Python programs. An evaluation on 15 Python programs shows that Herder can use this analysis to accurately and efficiently recommend type assignments that optimize the performance of these programs without sacrificing the safety guarantees provided by static typing. 
    more » « less