skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Gradual type theory
Abstract Gradually typed languages are designed to support both dynamically typed and statically typed programming styles while preserving the benefits of each. Sound gradually typed languages dynamically check types at runtime at the boundary between statically typed and dynamically typed modules. However, there is much disagreement in the gradual typing literature over how to enforce complex types such as tuples, lists, functions and objects. In this paper, we propose a new perspective on the design of runtime gradual type enforcement: runtime type casts exist precisely to ensure the correctness of certain type-based refactorings and optimizations. For instance, for simple types, a language designer might desire that beta-eta equality is valid. We show that this perspective is useful by demonstrating that a cast semantics can be derived from beta-eta equality. We do this by providing an axiomatic account program equivalence in a gradual cast calculus in a logic we call gradual type theory (GTT). Based on Levy’s call-by-push-value, GTT allows us to axiomatize both call-by-value and call-by-name gradual languages. We then show that we can derive the behavior of casts for simple types from the corresponding eta equality principle and the assumption that the language satisfies a property called graduality , also known as the dynamic gradual guarantee. Since we can derive the semantics from the assumption of eta equality, we also receive a useful contrapositive: any observably different cast semantics that satisfies graduality must violate the eta equality. We show the consistency and applicability of our axiomatic theory by proving that a contract-based implementation using the lazy cast semantics gives a logical relations model of our type theory, where equivalence in GTT implies contextual equivalence of the programs. Since GTT also axiomatizes the dynamic gradual guarantee, our model also establishes this central theorem of gradual typing. The model is parameterized by the implementation of the dynamic types, and so gives a family of implementations that validate type-based optimization and the gradual guarantee.  more » « less
Award ID(s):
1910522 1816837 1909517
NSF-PAR ID:
10299480
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Functional Programming
Volume:
31
ISSN:
0956-7968
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Morales, J.F. ; Orchard, D. (Ed.)
    In this paper, we describe our experience incorporating gradual types in a statically typed functional language with Hindley-Milner style type inference. Where most gradually typed systems aim to improve static checking in a dynamically typed language, we approach it from the opposite perspective and promote dynamic checking in a statically typed language. Our approach provides a glimpse into how languages like SML and OCaml might handle gradual typing. We discuss our implementation and challenges faced—specifically how gradual typing rules apply to our representation of composite and recursive types. We review the various implementations that add dynamic typing to a statically typed language in order to highlight the different ways of mixing static and dynamic typing and examine possible inspirations while maintaining the gradual nature of our type system. This paper also discusses our motivation for adding gradual types to our language, and the practical benefits of doing so in our industrial setting. 
    more » « less
  2. In gradual typing, different languages perform different dynamic type checks for the same program even though the languages have the same static type system. This raises the question of whether, given a gradually typed language, the combination of the translation that injects checks in well-typed terms and the dynamic semantics that determines their behavior sufficiently enforce the static type system of the language. Neither type soundness, nor complete monitoring, nor any other meta-theoretic property of gradually typed languages to date provides a satisfying answer.

    In response, we present vigilance, a semantic analytical instrument that defines when the check-injecting translation and dynamic semantics of a gradually typed language are adequate for its static type system. Technically, vigilance asks if a given translation-and-semantics combination enforces the complete run-time typing history of a value, which consists of all of the types associated with the value. We show that the standard combination for so-called Natural gradual typing is vigilant for the standard simple type system, but the standard combination for Transient gradual typing is not. At the same time, the standard combination for Transient is vigilant for a tag type system but the standard combination for Natural is not. Hence, we clarify the comparative type-level reasoning power between the two most studied approaches to sound gradual typing. Furthermore, as an exercise that demonstrates how vigilance can guide design, we introduce and examine a new theoretical static gradual type system, dubbed truer, that is stronger than tag typing and more faithfully reflects the type-level reasoning power that the dynamic semantics of Transient gradual typing can guarantee.

     
    more » « less
  3. Information flow type systems enforce the security property of noninterference by detecting unauthorized data flows at compile-time. However, they require precise type annotations, making them difficult to use in practice as much of the legacy infrastructure is written in untyped or dynamically-typed languages. Gradual typing seamlessly integrates static and dynamic typing, providing the best of both approaches, and has been applied to information flow control, where information flow monitors are derived from gradual security types. Prior work on gradual information flow typing uncovered tensions between noninterference and the dynamic gradual guarantee- the property that less precise security type annotations in a program should not cause more runtime errors.This paper re-examines the connection between gradual information flow types and information flow monitors to identify the root cause of the tension between the gradual guarantees and noninterference. We develop runtime semantics for a simple imperative language with gradual information flow types that provides both noninterference and gradual guarantees. We leverage a proof technique developed for FlowML and reduce noninterference proofs to preservation proofs. 
    more » « less
  4. Abstract Gradual typing allows programs to enjoy the benefits of both static typing and dynamic typing. While it is often desirable to migrate a program from more dynamically typed to more statically typed or vice versa, gradual typing itself does not provide a way to facilitate this migration. This places the burden on programmers who have to manually add or remove type annotations. Besides the general challenge of adding type annotations to dynamically typed code, there are subtle interactions between these annotations in gradually typed code that exacerbate the situation. For example, to migrate a program to be as static as possible, in general, all possible combinations of adding or removing type annotations from parameters must be tried out and compared. In this paper, we address this problem by developing migrational typing , which efficiently types all possible ways of replacing dynamic types with fully static types for a gradually typed program. The typing result supports automatically migrating a program to be as static as possible or introducing the least number of dynamic types necessary to remove a type error. The approach can be extended to support user-defined criteria about which annotations to modify. We have implemented migrational typing and evaluated it on large programs. The results show that migrational typing scales linearly with the size of the program and takes only 2–4 times longer than plain gradual typing. 
    more » « less
  5. Gradually typed programming languages permit the incremental addition of static types to untyped programs. To remain sound, languages insert run-time checks at the boundaries between typed and untyped code. Unfortunately, performance studies have shown that the overhead of these checks can be disastrously high, calling into question the viability of sound gradual typing. In this paper, we show that by building on existing work on soft contract verification, we can reduce or eliminate this overhead. Our key insight is that while untyped code cannot be trusted by a gradual type system, there is no need to consider only the worst case when optimizing a gradually typed program. Instead, we statically analyze the untyped portions of a gradually typed program to prove that almost all of the dynamic checks implied by gradual type boundaries cannot fail, and can be eliminated at compile time. Our analysis is modular, and can be applied to any portion of a program. We evaluate this approach on a dozen existing gradually typed programs previously shown to have prohibitive performance overhead—with a median overhead of 2.5× and up to 80.6× in the worst case—and eliminate all overhead in most cases, suffering only 1.5× overhead in the worst case. 
    more » « less