skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seismic wavefield reconstruction using a pre-conditioned wavelet–curvelet compressive sensing approach
SUMMARY The proliferation of large seismic arrays have opened many new avenues of geophysical research; however, most techniques still fundamentally treat regional and global scale seismic networks as a collection of individual time-series rather than as a single unified data product. Wavefield reconstruction allows us to turn a collection of individual records into a single structured form that treats the seismic wavefield as a coherent 3-D or 4-D entity. We propose a split processing scheme based on a wavelet transform in time and pre-conditioned curvelet-based compressive sensing in space to create a sparse representation of the continuous seismic wavefield with smooth second-order derivatives. Using this representation, we illustrate several applications, including surface wave gradiometry, Helmholtz–Hodge decomposition of the wavefield into irrotational and solenoidal components, and compression and denoising of seismic records.  more » « less
Award ID(s):
1848166 1822214
PAR ID:
10316033
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
227
Issue:
1
ISSN:
0956-540X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern-day reservoir management and monitoring of geologic carbon storage increasingly call for costly time-lapse seismic data collection. We demonstrate how techniques from graph theory can be used to optimize acquisition geometries for low-cost sparse 4D seismic data. Based on midpoint-offset-domain connectivity arguments, our algorithm automatically produces sparse nonreplicated time-lapse acquisition geometries that favor wavefield recovery. 
    more » « less
  2. SUMMARY Tsunami generation by offshore earthquakes is a problem of scientific interest and practical relevance, and one that requires numerical modelling for data interpretation and hazard assessment. Most numerical models utilize two-step methods with one-way coupling between separate earthquake and tsunami models, based on approximations that might limit the applicability and accuracy of the resulting solution. In particular, standard methods focus exclusively on tsunami wave modelling, neglecting larger amplitude ocean acoustic and seismic waves that are superimposed on tsunami waves in the source region. In this study, we compare four earthquake-tsunami modelling methods. We identify dimensionless parameters to quantitatively approximate dominant wave modes in the earthquake-tsunami source region, highlighting how the method assumptions affect the results and discuss which methods are appropriate for various applications such as interpretation of data from offshore instruments in the source region. Most methods couple a 3-D solid earth model, which provides the seismic wavefield or at least the static elastic displacements, with a 2-D depth-averaged shallow water tsunami model. Assuming the ocean is incompressible and tsunami propagation is negligible over the earthquake duration leads to the instantaneous source method, which equates the static earthquake seafloor uplift with the initial tsunami sea surface height. For longer duration earthquakes, it is appropriate to follow the time-dependent source method, which uses time-dependent earthquake seafloor velocity as a forcing term in the tsunami mass balance. Neither method captures ocean acoustic or seismic waves, motivating more advanced methods that capture the full wavefield. The superposition method of Saito et al. solves the 3-D elastic and acoustic equations to model the seismic wavefield and response of a compressible ocean without gravity. Then, changes in sea surface height from the zero-gravity solution are used as a forcing term in a separate tsunami simulation, typically run with a shallow water solver. A superposition of the earthquake and tsunami solutions provides an approximation to the complete wavefield. This method is algorithmically a two-step method. The complete wavefield is captured in the fully coupled method, which utilizes a coupled solid Earth and compressible ocean model with gravity. The fully coupled method, recently incorporated into the 3-D open-source code SeisSol, simultaneously solves earthquake rupture, seismic waves and ocean response (including gravity). We show that the superposition method emerges as an approximation to the fully coupled method subject to often well-justified assumptions. Furthermore, using the fully coupled method, we examine how the source spectrum and ocean depth influence the expression of oceanic Rayleigh waves. Understanding the range of validity of each method, as well as its computational expense, facilitates the selection of modelling methods for the accurate assessment of earthquake and tsunami hazards and the interpretation of data from offshore instruments. 
    more » « less
  3. SUMMARY In previous publications, we presented a general framework, which we called ‘box tomography’, that allows the coupling of any two different numerical seismic wave propagation solvers, respectively outside and inside a target region, or ‘box’. The goal of such hybrid wavefield computations is to reduce the cost of computations in the context of full-waveform inversion for structure within the target region, when sources and/or receivers are located at large distances from the box. Previously, we had demonstrated this approach with sources and receivers outside the target region in a 2-D acoustic spherical earth model, and demonstrated and applied this methodology in the 3-D spherical elastic Earth in a continental scale inversion in which all stations were inside the target region. Here we extend the implementation of the approach to the case of a 3-D global elastic earth model in the case where both sources and stations are outside the box. We couple a global 3-D solver, SPECFEM3D_GLOBE, for the computation of the wavefield and Green’s functions in a reference 3-D model, with a regional 3-D solver, RegSEM, for the computation of the wavefield within the box, by means of time-reversal mirrors. We briefly review key theoretical aspects, showing in particular how only the displacement is needed to be stored at the boundary of the box. We provide details of the practical implementation, including the geometrical design of the mirrors, how we deal with different sizes of meshes in the two solvers, and how we address memory-saving through the use of B-spline compression of the recorded wavefield on the mirror. The proposed approach is numerically efficient but also versatile, since adapting it to other solvers is straightforward and does not require any changes in the solver codes themselves, as long as the displacement can be recovered at any point in time and space. We present benchmarks of the hybrid computations against direct computations of the wavefield between a source and an array of stations in a realistic geometry centred in the Yellowstone region, with and without a hypothetical plume within the ‘box’, and with a 1-D or a 3-D background model, down to a period of 20 s. The ultimate goal of this development is for applications in the context of imaging of remote target regions in the deep mantle, such as, for example, Ultra Low Velocity Zones. 
    more » « less
  4. Seismic imaging methods have provided detailed three-dimensional constraints on the physical properties of magmatic systems leading to invaluable insight into the storage, differentiation and dynamics of magma. These constraints have been crucial to the development of our modern understanding of magmatic systems. However, there are still outstanding knowledge gaps resulting from the challenges inherent in seismic imaging of volcanoes. These challenges stem from the complex physics of wave propagation across highly heterogeneous low-velocity anomalies associated with magma reservoirs. Ray-based seismic imaging methods such as travel-time and surface-wave tomography lead to under-recovery of such velocity anomalies and to under-estimation of melt fractions. This review aims to help the volcanologist to fully utilize the insights gained from seismic imaging and account for the resolution limits. We summarize the advantages and limitations of the most common imaging methods and propose best practices for their implementation and the quantitative interpretation of low-velocity anomalies. We constructed and analysed a database of 277 seismic imaging studies at 78 arc, hotspot and continental rift volcanoes. Each study is accompanied by information about the seismic source, part of the wavefield used, imaging method, any detected low-velocity zones, and estimated melt fraction. Thirty nine studies attempted to estimate melt fractions at 22 different volcanoes. Only five studies have found evidence of melt storage at melt fractions above the critical porosity that separates crystal mush from mobile magma. The median reported melt fraction is 13% suggesting that magma storage is dominated by low-melt fraction crystal mush. However, due to the limits of seismic resolution, the seismological evidence does not rule out the presence of small (<10 km 3 ) and medium-sized (<100 km 3 ) high-melt fraction magma chambers at many of the studied volcanoes. The combination of multiple tomographic imaging methods and the wider adoption of methods that use more of the seismic wavefield than the first arriving travel-times, promise to overcome some of the limitations of seismic tomography and provide more reliable constraints on melt fractions. Wider adoption of these new methods and advances in data collection are needed to enable a revolution in imaging magma reservoirs. 
    more » « less
  5. SUMMARY The dependence of seismic wave speeds on propagation or polarization direction, called seismic anisotropy, is a relatively direct indicator of mantle deformation and flow. Mantle seismic anisotropy is often inferred from measurements of shear-wave splitting. A number of standard techniques to measure shear-wave splitting have been applied globally; for example, *KS splitting is often used to measure upper mantle anisotropy. In order to obtain robust constraints on anisotropic geometry, it is necessary to sample seismic anisotropy from different directions, ideally using different seismic phases with different incidence angles. However, many standard analysis techniques can only be applied for certain epicentral distances and source–receiver geometries. To search for new ways to detect mantle anisotropy, instead of focusing on the sensitivity of individual phases, we investigate the wavefield as a whole: we apply a ‘wavefield differencing’ approach to (systematically) understand what parts of the seismic wavefield are most affected by splitting due to seismic anisotropy in the mantle. We analyze differences between synthetic global wavefields calculated for isotropic and anisotropic input models, incorporating seismic anisotropy at different depths. Our results confirm that the seismic phases that are commonly used in splitting techniques are indeed strongly influenced by mantle anisotropy. However, we also identify less commonly used phases whose waveforms reflect the effects of anisotropy. For example, PS is strongly affected by splitting due to seismic anisotropy in the upper mantle. We show that PS can be used to fill in gaps in global coverage in shear-wave splitting data sets (for example, beneath ocean basins). We find that PcS is also a promising phase, and present a proof-of-concept example of PcS splitting analysis across the contiguous United States using an array processing approach. Because PcS is recorded at much shorter distances than *KS phases, PcS splitting can therefore fill in gaps in backazimuthal coverage. Our wavefield differencing results further hint at additional potential novel methods to detect and characterize splitting due to mantle seismic anisotropy. 
    more » « less