Surface wave tomography is widely used to improve our understanding of continental magma reservoirs that may be capable of fueling explosive volcanic eruptions. However, traditional surface wave tomography based on inversions for phase velocity maps and locally 1D shear velocity may have difficulty resolving strong 3D low‐velocity anomalies associated with crustal magma reservoirs. Here, we perform synthetic tomography experiments based on 3D seismic waveform simulations to understand how the limitations of surface wave tomography could affect interpretations of tomography in volcanic settings. We focus our modeling on the Yellowstone volcanic system, one of the largest and most thoroughly studied continental magmatic systems, and explore scenarios in which the maximum shear velocity anomaly associated with the crustal magma reservoir ranges between −10% and −66%. We find that even with the well‐instrumented setting near Yellowstone, the recovered shear velocity anomalies in the mid‐to‐upper crust are severely diminished due to the small spatial scale of the reservoir with respect to the seismic wavelengths that sample it. In particular, recovered
- Award ID(s):
- 2023338
- PAR ID:
- 10440842
- Date Published:
- Journal Name:
- Frontiers in Earth Science
- Volume:
- 10
- ISSN:
- 2296-6463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract V S anomalies could be reduced by a factor of two or more, implying that the inferred melt fraction of large‐scale continental magma reservoirs may be considerably underestimated. -
null (Ed.)Abstract Despite multidisciplinary evidence for crustal magma accumulation below Santorini volcano, Greece, the structure and melt content of the shallow magmatic system remain poorly constrained. We use three-dimensional (3-D) velocity models from tomographic inversions of active-source seismic P-wave travel times to identify a pronounced low-velocity anomaly (–21%) from 2.8 km to 5 km depth localized below the northern caldera basin. This anomaly is consistent with depth estimates of pre-eruptive storage and a recent inflation episode, supporting the interpretation of a shallow magma body that causes seismic attenuation and ray bending. A suite of synthetic tests shows that the geometry is well recovered while a range of melt contents (4%–13% to fully molten) are allowable. A thin mush region (2%–7% to 3%–10% melt) extends from the main magma body toward the northeast, observed as low velocities confined by tectono-magmatic lineaments. This anomaly terminates northwest of Kolumbo; little to no melt underlies the seamount from 3 to 5 km depth. These structural constraints suggest that crustal extension and edifice loads control the geometry of magma accumulation and emphasize that the shallow crust remains conducive to melt storage shortly after a caldera-forming eruption.more » « less
-
Abstract The transcrustal, mush‐dominated magma storage paradigm, which posits liquid melt is heterogeneously distributed within a vertically extensive magma mush, differs significantly from classical geodetic models, where melt is stored within liquid‐dominant chambers within an elastic crust. Here, we present mechanical models consistent with transcrustal melt storage by separating the magmatic system into three domains: liquid melt lenses, surrounding crystal‐dominated poroelastic magma mush, and elastic crust. Our results indicate that pressure changes within the melt lens may induce surface displacements that approximate the displacements predicted by spheroidal pressure sources that mimic the geometry of the mush zone. Adopting constitutive parameters of the mush dependent on mush melt fraction, we show that a magma storage system will have an effective geometry inferred from surface displacements that smoothly transitions from the geometry of the melt lens to the geometry of the mush as mush melt fraction increases. This holds true across multiple storage zone geometries, including a “transcrustal” storage zone with a magma mush that extends deep in the crust. Accounting for the presence of a magma mush can lead to an increase in the estimated volume of injected or withdrawn magma (by several multiples) compared to values obtained using fully elastic models. Comparing erupted magma volumes to source volume changes allows for an estimation of magma compressibility; we show the presence of a mush can increase this estimated magma compressibility by up to approximately 50%, suggesting magmas may have higher bubble fraction than previous geodetically derived estimates.
-
Abstract Magmatic systems are composed of melt accumulations and crystal mush that evolve with melt transport, contributing to igneous processes, volcano dynamics, and eruption triggering. Geophysical studies of active volcanoes have revealed details of shallow-level melt reservoirs, but little is known about fine-scale melt distribution at deeper levels dominated by crystal mush. Here, we present new seismic reflection images from Axial Seamount, northeastern Pacific Ocean, revealing a 3–5-km-wide conduit of vertically stacked melt lenses, with near-regular spacing of 300–450 m extending into the inferred mush zone of the mid-to-lower crust. This column of lenses underlies the shallowest melt-rich portion of the upper-crustal magma reservoir, where three dike intrusion and eruption events initiated. The pipe-like zone is similar in geometry and depth extent to the volcano inflation source modeled from geodetic records, and we infer that melt ascent by porous flow focused within the melt lens conduit led to the inflation-triggered eruptions. The multiple near-horizontal lenses are interpreted as melt-rich layers formed via mush compaction, an interpretation supported by one-dimensional numerical models of porous flow in a viscoelastic matrix.more » « less
-
Abstract We conducted experiments to study melt migration in crystal‐rich mushes, with application to magma ascent within transcrustal magma reservoirs. Mushes with crystal volume fractions of 0.59–0.83 were prepared by hot‐pressing crushed borosilicate glass mixed with different proportions of quartz sand particles. Each experimental sample comprises stacked disks of mush and soda‐lime glass, a proxy for crystal‐free magma. Samples were subjected to confining pressures of 100–300 MPa and a temperature of 900°C (above the glass transition temperatures of the borosilicate and soda‐lime glasses) for up to 6 h. The bottom and circumference of the mush and soda lime disks experience the confining pressure, but the top of the mush disks is at room pressure, resulting in a pore‐pressure gradient across the mush layer. Following cooling and decompression, we determined the area fraction and morphology of soda‐lime melt that migrated into the mush layer during experiments. Melt fraction is more strongly correlated to crystal fraction than pore‐pressure gradient, increasing with crystal fraction before sharply decreasing as crystal fractions exceed 0.8. This change at 0.8 coincides with the transition from crystals in the mush moving during soda‐lime migration to crystals forming a continuous rigid network. In our experiments, melt migration occurred by viscous fingering, but near the mobile‐to‐rigid transition, melt migration is enhanced by additional capillary action. Our results indicate that magma migration may peak when rigid mushes “unlock” to become mobile. This transition may mark an increase in magma migration, a potential precursor to volcanic unrest and eruption.