skip to main content


Title: Polymer–Plasticizer Coatings for BTEX Detection Using Quartz Crystal Microbalance
Sensing films based on polymer–plasticizer coatings have been developed to detect volatile organic compounds (VOCs) in the atmosphere at low concentrations (ppm) using quartz crystal microbalances (QCMs). Of particular interest in this work are the VOCs benzene, ethylbenzene, and toluene which, along with xylene, are collectively referred to as BTEX. The combinations of four glassy polymers with five plasticizers were studied as prospective sensor films for this application, with PEMA-DINCH (5%) and PEMA-DIOA (5%) demonstrating optimal performance. This work shows how the sensitivity and selectivity of a glassy polymer film for BTEX detection can be altered by adding a precise amount and type of plasticizer. To quantify the film saturation dynamics and model the absorption of BTEX analyte molecules into the bulk of the sensing film, a diffusion study was performed in which the frequency–time curve obtained via QCM was correlated with gas-phase analyte composition and the infinite dilution partition coefficients of each constituent. The model was able to quantify the respective concentrations of each analyte from binary and ternary mixtures based on the difference in response time (τ) values using a single polymer–plasticizer film as opposed to the traditional approach of using a sensor array. This work presents a set of polymer–plasticizer coatings that can be used for detecting and quantifying the BTEX in air, and discusses the selection of an optimum film based on τ, infinite dilution partition coefficients, and stability over a period of time.  more » « less
Award ID(s):
1640668
NSF-PAR ID:
10316050
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
21
Issue:
16
ISSN:
1424-8220
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Electrospray deposition (ESD) applies a high voltage to liquids flowing through narrow capillaries to produce monodisperse generations of droplets down to hundreds of nanometers in diameter, each carrying a small amount of the delivered solute. This deposition method has been combined with insulated stencil masks for fabricating micropatterns by spraying solutions containing nanoparticles, polymers, or biomaterials. To optimize the fabrication process for micro-coatings, a self-limiting electrospray deposition (SLED) method has recently been developed. Here, we combine SLED with a pre-existing patterned polymer film to study SLED’s fundamental behavior in a bilayer geometry. SLED has been observed when glassy insulating materials are sprayed onto conductive substrates, where a thickness-limited film forms as charge accumulates and repels the arrival of additional charged droplets. In this study, polystyrene (PS), Parylene C, and SU-8 thin films of varying thickness on silicon are utilized as insulated spraying substrates. Polyvinylpyrrolidone (PVP), a thermoplastic polymer is sprayed below its glass transition temperature (T g ) to investigate the SLED behavior on the pre-deposited insulating films. Furthermore, to examine the effects of in-plane confinement on the spray, a microhole array patterned onto the PS thin film by laser dewetting was sprayed with dyed PVP in the SLED mode. This was then extended to an unmasked electrode array showing that masked SLED and laser dewetting could be used to target microscale regions of conventionally-patterned electronics. 
    more » « less
  2. Shahzad, Faisal (Ed.)
    Most research aimed at measuring biomarkers on the skin is only concerned with sensing chemicals in sweat using electrical signals, but these methods are not truly non-invasive nor non-intrusive because they require substantial amounts of sweat to get a reading. This project aims to create a truly non-invasive wearable sensor that continuously detects the gaseous acetone (a biomarker related to metabolic disorders) that ambiently comes out of the skin. Composite films of polyaniline and cellulose acetate, exhibiting chemo-mechanical actuation upon exposure to gaseous acetone, were tested in the headspaces above multiple solutions containing acetone, ethanol, and water to gauge response sensitivity, selectivity, and repeatability. The bending of the films in response to exposures to these environments was tracked by an automatic video processing code, which was found to out-perform an off-the-shelf deep neural network-based tracker. Using principal component analysis, we showed that the film bending is low dimensional with over 90% of the shape changes being captured with just two parameters. We constructed forward models to predict shape changes from the known exposure history and found that a linear model can explain 40% of the observed variance in film tip angle changes. We constructed inverse models, going from third order fits of shape changes to acetone concentrations where about 45% of the acetone variation and about 30% of ethanol variation are captured by linear models, and non-linear models did not perform substantially better. This suggests there is sufficient sensitivity and inherent selectivity of the films. These models, however, provide evidence for substantial hysteretic or long-time-scale responses of the PANI films, seemingly due to the presence of water. Further experiments will allow more accurate discrimination of unknown exposure environments. Nevertheless, the sensor will operate with high selectivity in low sweat body locations, like behind the ear or on the nails. 
    more » « less
  3. Ingestible capsule systems continue to evolve to overcome drawbacks associated with traditional gastrointestinal (GI) diagnostic and therapeutic processes, such as limitations on which sections of the GI tract can be accessed or the inability to measure local biomarker concentrations. We report an integrated capsule sensing system, utilizing a hybrid packaging scheme coupled with triglyceride film-coated capacitive sensors, for measuring biochemical species present in the duodenum, such as pancreatic lipase and bile acids. The system uses microfabricated capacitive sensors interfaced with a Bluetooth low-energy (BLE)-microcontroller, allowing wireless connectivity to a mobile app. The triglyceride films insulate the sensor surface and react either with 0.01–1 mM lipase via hydrolysis or 0.07–7% w/v bile acids via emulsification in simulated fluids, leading to measurable changes in capacitance. Cross reactivity of the triglyceride films is evaluated in both phosphate buffered saline (PBS) as well as pancreatic trypsin solutions. The film morphology is observed after exposure to each stimulus to better understand how these changes alter the sensor capacitance. The capsule utilizes a 3D-printed package coated with polymers that remain intact in acid solution (mimicking gastric conditions), then dissolve at a duodenum-mimicking neutral pH for triggered opening of the sensing chamber from which we can subsequently detect the presence of pancreatic lipase. This device strategy represents a significant step towards using embedded packaging and triglyceride-based materials to target specific regions of the GI tract and sensing biochemical contents for evaluating gastrointestinal health. 
    more » « less
  4. Abstract

    There are advantages to polymer/nanoparticle composite‐based volatile organic compounds (VOCs) sensors, such as high chemical and physical stability, operability under extreme conditions, flexible use in manufacturing, and low cost. Nevertheless, their lower limit of detection due to thickness‐dependent diffusion has constrained their application. Inspired by the metaxylem in vascular plants and its vertical conduits and horizontal pits that enable efficient transpiration, a polymer/nanoparticle composite‐based sensor is fabricated with a controllable, spontaneously formed, hollow core for inline VOCs transportation, and porous microstructure for radial direction diffusion. The hollow core is surrounded by an inner porous layer (thermoplastic polyurethane (TPU)), a middle sensing layer (TPU/graphene nanoplatelets/multiwalled carbon nanotubes), and an outer mechanically durable layer (TPU). This multilayered structure shows a 600% higher response rate compared to a single‐layered composite fiber sensor, with a low limit of detection (e.g., ≈15 ppm for xylene) and high selectivity based on the Flory–Huggins interaction parameter. This flexible and stretchable sensor also demonstrates a dual parameter sensing capability from VOC concentrations and uniaxial strain deformation. Via a one‐step fiber spinning procedure, this self‐induced hollow fiber offers a unique method of microstructural design, which enables the detection of low‐concentration VOCs by polymer/nanoparticle‐based sensors.

     
    more » « less
  5. Abstract

    Polyetherimides (PEI) are high‐performance thermoplastic polymers featuring a high dielectric constant and excellent thermal stability. In particular, PEI thin films are of increasing interest for use in solid‐state capacitors and membranes, yet the cost and thickness are limited by conventional synthesis and thermal drawing techniques. Here, a method of synthesizing ultrathin PEI films and coatings is introduced based on interfacial polymerization (IP) of poly(amic acid), followed by thermal imidization. Control of transport, reaction, and precipitation kinetics enables tailoring of PEI film morphology from a nanometer‐scale smooth film to a porous micrometer‐scale layer of polymer microparticles. At short reaction times (≈1 min) freestanding films are formed with ≈1 µm thickness, which to our knowledge surpass commercial state‐of‐the‐art films (3–5 µm minimum thickness) made by thermal drawing. PEI films synthesized via the IP route have thermal and optical properties on par with conventional PEI. The use of the final PEI is demonstrated in structurally colored films, dielectric layers in capacitors, and show that the IP route can form nanometer‐scale coatings on carbon nanotubes. The rapid film formation rate and fine property control are attractive for scale‐up, and established methods for roll‐to‐roll processing can be applied in future work.

     
    more » « less