skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Capacitive sensing of triglyceride film reactions: a proof-of-concept demonstration for sensing in simulated duodenal contents with gastrointestinal targeting capsule system
Ingestible capsule systems continue to evolve to overcome drawbacks associated with traditional gastrointestinal (GI) diagnostic and therapeutic processes, such as limitations on which sections of the GI tract can be accessed or the inability to measure local biomarker concentrations. We report an integrated capsule sensing system, utilizing a hybrid packaging scheme coupled with triglyceride film-coated capacitive sensors, for measuring biochemical species present in the duodenum, such as pancreatic lipase and bile acids. The system uses microfabricated capacitive sensors interfaced with a Bluetooth low-energy (BLE)-microcontroller, allowing wireless connectivity to a mobile app. The triglyceride films insulate the sensor surface and react either with 0.01–1 mM lipase via hydrolysis or 0.07–7% w/v bile acids via emulsification in simulated fluids, leading to measurable changes in capacitance. Cross reactivity of the triglyceride films is evaluated in both phosphate buffered saline (PBS) as well as pancreatic trypsin solutions. The film morphology is observed after exposure to each stimulus to better understand how these changes alter the sensor capacitance. The capsule utilizes a 3D-printed package coated with polymers that remain intact in acid solution (mimicking gastric conditions), then dissolve at a duodenum-mimicking neutral pH for triggered opening of the sensing chamber from which we can subsequently detect the presence of pancreatic lipase. This device strategy represents a significant step towards using embedded packaging and triglyceride-based materials to target specific regions of the GI tract and sensing biochemical contents for evaluating gastrointestinal health.  more » « less
Award ID(s):
1840468
PAR ID:
10195707
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Lab on a Chip
Volume:
20
Issue:
11
ISSN:
1473-0197
Page Range / eLocation ID:
2020 to 2032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Artificial smart skins that integrate sensing and adaptiveness present a novel platform in wearable electronics on epidermis or next‐generation robotics. Herein, a highly sensitive capacitive touch senor based on a self‐conformable bi‐stable electroactive polymer (BSEP) is developed. The device combines the properties of conformable polymers and touch sensors, which grants the sensor the ability to conform to the shape of various surfaces and in different working conditions. A spray‐coated silver nanowire (AgNW) is selected as the sensor electrode for high‐resolution patterning. The unique antenna‐shaped electrode pattern results in a capacitance change of 31% when in contact with ground at a baseline of 0.13 pF. The BSEP provides stiffness tunability via an embedded compliant heater. The heater combines interdigitated silver with carbon nanotubes delivering uniform and highly efficient heating to create a tunable device with stiffness between 100s of MPa and tens of kPa, providing a large working flexibility. The efficient resistive heater provides uniform and stable heating over an area of 40 by 40 mm with a rate of 48 °C min−1at an input voltage as low as 7 V. This research merges intelligent polymeric systems and thin film electronics advancing conformable, skin‐like functional electronics. 
    more » « less
  2. Abstract Natural microbial sensing circuits can be rewired into new gene networks to build living sensors that detect and respond to disease‐associated biomolecules. However, synthetic living sensors, once ingested, are cleared from the gastrointestinal (GI) tract within 48 h; retaining devices in the intestinal lumen is prone to intestinal blockage or device migration. To localize synthetic microbes and safely extend their residence in the GI tract for health monitoring and sustained drug release, an ingestible magnetic hydrogel carrier is developed to transport diagnostic microbes to specific intestinal sites. The magnetic living hydrogel is localized and retained by attaching a magnet to the abdominal skin, resisting the peristaltic waves in the intestine. The device retention is validated in a human intestinal phantom and an in vivo rodent model, showing that the ingestible hydrogel maintains the integrated living bacteria for up to seven days, which allows the detection of heme for GI bleeding in the harsh environment of the gut. The retention of microelectronics is also demonstrated by incorporating a temperature sensor into the magnetic hydrogel carrier. 
    more » « less
  3. Abstract Ingestible capsules have the potential to become an attractive alternative to traditional means of treating and detecting gastrointestinal (GI) disease. As device complexity increases, so too does the demand for more effective capsule packaging technologies to elegantly target specific GI locations. While pH-responsive coatings have been traditionally used for the passive targeting of specific GI regions, their application is limited due to the geometric restrictions imposed by standard coating methods. Dip, pan, and spray coating methods only enable the protection of microscale unsupported openings against the harsh GI environment. However, some emerging technologies have millimeter-scale components for performing functions such as sensing and drug delivery. To this end, we present the freestanding region-responsive bilayer (FRRB), a packaging technology for ingestible capsules that can be readily applied for various functional ingestible capsule components. The bilayer is composed of rigid polyethylene glycol (PEG) under a flexible pH-responsive Eudragit®FL 30 D 55, which protects the contents of the capsule until it arrives in the targeted intestinal environment. The FRRB can be fabricated in a multitude of shapes that facilitate various functional packaging mechanisms, some of which are demonstrated here. In this paper, we characterize and validate the use of this technology in a simulated intestinal environment, confirming that the FRRB can be tuned for small intestinal release. We also show a case example where the FRRB is used to protect and expose a thermomechanical actuator for targeted drug delivery. 
    more » « less
  4. Real-time monitoring of the gastrointestinal tract in a safe and comfortable manner is valuable for the diagnosis and therapy of many diseases. Within this realm, our review captures the trends in ingestible capsule systems with a focus on hardware and software technologies used for capsule endoscopy and remote patient monitoring. We introduce the structure and functions of the gastrointestinal tract, and the FDA guidelines for ingestible wireless telemetric medical devices. We survey the advanced features incorporated in ingestible capsule systems, such as microrobotics, closed-loop feedback, physiological sensing, nerve stimulation, sampling and delivery, panoramic imaging with adaptive frame rates, and rapid reading software. Examples of experimental and commercialized capsule systems are presented with descriptions of their sensors, devices, and circuits for gastrointestinal health monitoring. We also show the recent research in biocompatible materials and batteries, edible electronics, and alternative energy sources for ingestible capsule systems. The results from clinical studies are discussed for the assessment of key performance indicators related to the safety and effectiveness of ingestible capsule procedures. Lastly, the present challenges and outlook are summarized with respect to the risks to health, clinical testing and approval process, and technology adoption by patients and clinicians. 
    more » « less
  5. Abstract Auxetic materials showing a negative Poisson’s ratio can offer unusual sensing capabilities due to drastic percolation changes. This study presents the capacitive response of wet-fractured carbon nanotube paper composites in exposure to humidity. A strained composite strip is fractured to produce numerous cantilevers consisting of cellulose fibers coated with carbon nanotubes. During stretching, the thin composite buckles in the out-of-plane direction, which causes auxetic behavior to generate the radially structured electrodes. The crossbar junctions forming among the fractured electrodes significantly increase capacitance and its response to humidity as a function of sensor widths. The molecular junctions switch electric characteristics between predominantly resistive- and capacitive elements. The resulting capacitive response is characterized for humidity sensing without the need for an additional absorption medium. The normalized capacitance change (ΔC/C 0 ) exhibits a sensitivity of 0.225 within the range of 40 ∼ 80% relative humidity. The novel auxetic behavior of a water-printed paper-based nanocomposite paves the way for inexpensive humidity and sweat sensors. 
    more » « less