The well‐known phenomenon of phase separation in synthetic polymers and proteins has become a major topic in biophysics because it has been invoked as a mechanism of compartment formation in cells, without the need for membranes. Most of the coacervates (or condensates) are composed of Intrinsically Disordered Proteins (IDPs) or regions that are structureless, often in interaction with RNA and DNA. One of the more intriguing IDPs is the 526‐residue RNA‐binding protein, Fused in Sarcoma (FUS), whose monomer conformations and condensates exhibit unusual behavior that are sensitive to solution conditions. By focussing principally on the N‐terminus low‐complexity domain (FUS‐LC comprising residues 1–214) and other truncations, we rationalize the findings of solid‐state NMR experiments, which show that FUS‐LC adopts a non‐polymorphic fibril structure (core‐1) involving residues 39–95, flanked by fuzzy coats on both the N‐ and C‐terminal ends. An alternate structure (core‐2), whose free energy is comparable to core‐1, emerges only in the truncated construct (residues 110–214). Both core‐1 and core‐2 fibrils are stabilized by a Tyrosine ladder as well as hydrophilic interactions. The morphologies (gels, fibrils, and glass‐like) adopted by FUS seem to vary greatly, depending on the experimental conditions. The effect of phosphorylation is site‐specific. Simulations show that phosphorylation of residues within the fibril has a greater destabilization effect than residues that are outside the fibril region, which accords well with experiments. Many of the peculiarities associated with FUS may also be shared by other IDPs, such as TDP43 and hnRNPA2. We outline a number of problems for which there is no clear molecular explanation.
- Award ID(s):
- 1715174
- NSF-PAR ID:
- 10316098
- Date Published:
- Journal Name:
- Frontiers in Molecular Biosciences
- Volume:
- 9
- ISSN:
- 2296-889X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Growing evidence supports the confident association between distinct amyloid beta (Aβ) isoforms and Alzheimer's Disease (AD) pathogenesis. As such, critical investigations seeking to uncover the translational factors contributing to Aβ toxicity represent a venture of significant value. Herein, we comprehensively assess full-length Aβ42 stereochemistry, with a specific focus on models that consider naturally-occurring isomerization of Asp and Ser residues. We customize various forms of d -isomerized Aβ as natural mimics, ranging from fragments containing a single d residue to full length Aβ42 that includes multiple isomerized residues, systematically evaluating their cytotoxicity against a neuronal cell line. Combining multidimensional ion mobility-mass spectrometry experimental data with replica exchange molecular dynamics simulations, we confirm that co- d -epimerization at Asp and Ser residues within Aβ42 in both N-terminal and core regions effectively reduces its cytotoxicity. We provide evidence that this rescuing effect is associated with the differential and domain-specific compaction and remodeling of Aβ42 secondary structure.more » « less
-
Proline-rich domains (PRDs) are among the most prevalent signaling modules of eukaryotes but often unexplored by biophysical techniques as their heterologous recombinant expression poses significant difficulties. Using a “divide-and-conquer” approach, we present a detailed investigation of a PRD (166 residues; ∼30% prolines) belonging to a human protein ALIX, a versatile adaptor protein involved in essential cellular processes including ESCRT-mediated membrane remodeling, cell adhesion, and apoptosis. In solution, the N-terminal fragment of ALIX-PRD is dynamically disordered. It contains three tandem sequentially similar proline-rich motifs that compete for a single binding site on its signaling partner, TSG101-UEV, as evidenced by heteronuclear NMR spectroscopy. Global fitting of relaxation dispersion data, measured as a function of TSG101-UEV concentration, allowed precise quantitation of these interactions. In contrast to the soluble N-terminal portion, the C-terminal tyrosine-rich fragment of ALIX-PRD forms amyloid fibrils and viscous gels validated using dye-binding assays with amyloid-specific probes, congo red and thioflavin T (ThT), and visualized by transmission electron microscopy. Remarkably, fibrils dissolve at low temperatures (2 to 6 °C) or upon hyperphosphorylation with Src kinase. Aggregation kinetics monitored by ThT fluorescence shows that charge repulsion dictates phosphorylation-mediated fibril dissolution and that the hydrophobic effect drives fibril formation. These data illuminate the mechanistic interplay between interactions of ALIX-PRD with TSG101-UEV and polymerization of ALIX-PRD and its central role in regulating ALIX function. This study also demonstrates the broad functional repertoires of PRDs and uncovers the impact of posttranslational modifications in the modulation of reversible amyloids.
-
Abstract We previously presented a bioinformatic method for identifying diseases that arise from a mutation in a protein's low-complexity domain that drives the protein into pathogenic amyloid fibrils. One protein so identified was the tropomyosin-receptor kinase–fused gene protein (TRK-fused gene protein or TFG). Mutations in TFG are associated with degenerative neurological conditions. Here, we present experimental evidence that confirms our prediction that these conditions are amyloid-related. We find that the low-complexity domain of TFG containing the disease-related mutations G269V or P285L forms amyloid fibrils, and we determine their structures using cryo-electron microscopy (cryo-EM). These structures are unmistakably amyloid in nature and confirm the propensity of the mutant TFG low-complexity domain to form amyloid fibrils. Also, despite resulting from a pathogenic mutation, the fibril structures bear some similarities to other amyloid structures that are thought to be nonpathogenic and even functional, but there are other factors that support these structures' relevance to disease, including an increased propensity to form amyloid compared with the wild-type sequence, structure-stabilizing influence from the mutant residues themselves, and double-protofilament amyloid cores. Our findings elucidate two potentially disease-relevant structures of a previously unknown amyloid and also show how the structural features of pathogenic amyloid fibrils may not conform to the features commonly associated with pathogenicity.
-
Abstract Post‐translational modifications (PTMs) can affect the normal function and pathology of α‐synuclein (αS), an amyloid‐fibril‐forming protein linked to Parkinson's disease. Phosphorylation of αS Tyr39 has recently been found to display a dose‐dependent effect on fibril formation kinetics and to alter the morphology of the fibrils. Existing methods to access site‐specifically phosphorylated αS for biochemical studies include total or semi‐synthesis by native chemical ligation (NCL) as well as chemoenzymatic methods to phosphorylate peptides, followed by NCL. Here, we investigated a streamlined method to produce large quantities of phosphorylated αS by co‐expressing a kinase with a protein fragment in
Escherichia coli . We also introduced the use of methyl thioglycolate (MTG) to enable one‐pot NCL and desulfurization. We compare our optimized methods to previous reports and show that we can achieve the highest yields of site‐specifically phosphorylated protein through chemoenzymatic methods using MTG, and that our strategy is uniquely well suited to producing15N‐labeled, phosphorylated protein for NMR studies.