In this work, we study the problem of privately maximizing a submodular function in the streaming setting. Extensive work has been done on privately maximizing submodular functions in the general case when the function depends upon the private data of individuals. However, when the size of the data stream drawn from the domain of the objective function is large or arrives very fast, one must privately optimize the objective within the constraints of the streaming setting. We establish fundamental differentially private baselines for this problem and then derive better trade-offs between privacy and utility for the special case of decomposable submodular functions. A submodular function is decomposable when it can be written as a sum of submodular functions; this structure arises naturally when each summand function models the utility of an individual and the goal is to study the total utility of the whole population as in the well-known Combinatorial Public Projects Problem. Finally, we complement our theoretical analysis with experimental corroboration.
more »
« less
Differentially Private Decomposable Submodular Maximization
We study the problem of differentially private constrained maximization of decomposable submodular functions. A submodular function is decomposable if it takes the form of a sum of submodular functions. The special case of maximizing a monotone, decomposable submodular function under cardinality constraints is known as the Combinatorial Public Projects (CPP) problem (Papadimitriou, Schapira, and Singer 2008). Previous work by Gupta et al. (2010) gave a differentially private algorithm for the CPP problem. We extend this work by designing differentially private algorithms for both monotone and non-monotone decomposable submodular maximization under general matroid constraints, with competitive utility guarantees. We complement our theoretical bounds with experiments demonstrating improved empirical performance.
more »
« less
- Award ID(s):
- 1750716
- NSF-PAR ID:
- 10316107
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 35
- Issue:
- 8
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 6984 to 6992
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Banerjee, Arindam ; Fukumizu, Kenji (Ed.)Numerous tasks in machine learning and artificial intelligence have been modeled as submodular maximization problems. These problems usually involve sensitive data about individuals, and in addition to maximizing the utility, privacy concerns should be considered. In this paper, we study the general framework of non-negative monotone submodular maximization subject to matroid or knapsack constraints in both offline and online settings. For the offline setting, we propose a differentially private $(1-\frac{\kappa}{e})$-approximation algorithm, where $\kappa\in[0,1]$ is the total curvature of the submodular set function, which improves upon prior works in terms of approximation guarantee and query complexity under the same privacy budget. In the online setting, we propose the first differentially private algorithm, and we specify the conditions under which the regret bound scales as $Ø(\sqrt{T})$, i.e., privacy could be ensured while maintaining the same regret bound as the optimal regret guarantee in the non-private setting.more » « less
-
We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a $1-1/e-\epsilon$ approximation for monotone functions and a $1/e-\epsilon$ approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is $O(\log^2{n}/\epsilon^3)$, which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a $1/e-\epsilon$ approximation using $O(\log(n/\epsilon) \log(1/\epsilon) \log(n+m)/ \epsilon^2)$ parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a $1-1/e-\epsilon$ approximation in $O(\log(n/\epsilon)\log(m)/\epsilon^2)$ parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective (Mahoney et al., 2016). Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function.more » « less
-
We investigate the problem of unconstrained combinatorial multi-armed bandits with fullbandit feedback and stochastic rewards for submodular maximization. Previous works investigate the same problem assuming a submodular and monotone reward function. In this work, we study a more general problem, i.e., when the reward function is not necessarily monotone, and the submodularity is assumed only in expectation. We propose Randomized Greedy Learning (RGL) algorithm and theoretically prove that it achieves a 1 2 -regret upper bound of O˜(nT 2 3 ) for horizon T and number of arms n. We also show in experiments that RGL empirically outperforms other full-bandit variants in submodular and non-submodular settings.more » « less
-
We investigate the problem of unconstrained combinatorial multi-armed bandits with full-bandit feedback and stochastic rewards for submodular maximization. Previous works investigate the same problem assuming a submodular and monotone reward function. In this work, we study a more general problem, i.e., when the reward function is not necessarily monotone, and the submodularity is assumed only in expectation. We propose Randomized Greedy Learning (RGL) algorithm and theoretically prove that it achieves a $\frac{1}{2}$-regret upper bound of $\Tilde{\mathcal{O}}(n T^{\frac{2}{3}})$ for horizon $T$ and number of arms $n$. We also show in experiments that RGL empirically outperforms other full-bandit variants in submodular and non-submodular settings.more » « less