skip to main content


Title: A chromosome-level genome assembly and annotation of the desert horned lizard, Phrynosoma platyrhinos , provides insight into chromosomal rearrangements among reptiles
Abstract Background

The increasing number of chromosome-level genome assemblies has advanced our knowledge and understanding of macroevolutionary processes. Here, we introduce the genome of the desert horned lizard, Phrynosoma platyrhinos, an iguanid lizard occupying extreme desert conditions of the American southwest. We conduct analysis of the chromosomal structure and composition of this species and compare these features across genomes of 12 other reptiles (5 species of lizards, 3 snakes, 3 turtles, and 1 bird).

Findings

The desert horned lizard genome was sequenced using Illumina paired-end reads and assembled and scaffolded using Dovetail Genomics Hi-C and Chicago long-range contact data. The resulting genome assembly has a total length of 1,901.85 Mb, scaffold N50 length of 273.213 Mb, and includes 5,294 scaffolds. The chromosome-level assembly is composed of 6 macrochromosomes and 11 microchromosomes. A total of 20,764 genes were annotated in the assembly. GC content and gene density are higher for microchromosomes than macrochromosomes, while repeat element distributions show the opposite trend. Pathway analyses provide preliminary evidence that microchromosome and macrochromosome gene content are functionally distinct. Synteny analysis indicates that large microchromosome blocks are conserved among closely related species, whereas macrochromosomes show evidence of frequent fusion and fission events among reptiles, even between closely related species.

Conclusions

Our results demonstrate dynamic karyotypic evolution across Reptilia, with frequent inferred splits, fusions, and rearrangements that have resulted in shuffling of chromosomal blocks between macrochromosomes and microchromosomes. Our analyses also provide new evidence for distinct gene content and chromosomal structure between microchromosomes and macrochromosomes within reptiles.

 
more » « less
Award ID(s):
1906188
NSF-PAR ID:
10362481
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
GigaScience
Volume:
11
ISSN:
2047-217X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sethuraman, A (Ed.)
    Abstract Spiny lizards in the genus Sceloporus are a model system among squamate reptiles for studies of chromosomal evolution. While most pleurodont iguanians retain an ancestral karyotype formula of 2n = 36 chromosomes, Sceloporus exhibits substantial karyotype variation ranging from 2n =  22 to 46 chromosomes. We present two annotated chromosome-scale genome assemblies for the Plateau Fence Lizard (Sceloporus tristichus) to facilitate research on the role of pericentric inversion polymorphisms on adaptation and speciation. Based on previous karyotype work using conventional staining, the S. tristichus genome is characterized as 2n =  22 with six pairs of macrochromosomes and five pairs of microchromosomes and a pericentric inversion polymorphism on chromosome 7 that is geographically variable. We provide annotated, chromosome-scale genomes for two lizards located at opposite ends of a dynamic hybrid zone that are each fixed for different inversion polymorphisms. The assembled genomes are 1.84–1.87 Gb (1.72 Gb for scaffolds mapping to chromosomes) with a scaffold N50 of 267.5 Mb. Functional annotation of the genomes resulted in ∼15K predicted gene models. Our assemblies confirmed the presence of a 4.62-Mb pericentric inversion on chromosome 7, which contains 62 annotated coding genes with known functions. In addition, we collected population genomics data using double digest RAD-sequencing for 44 S. tristichus to estimate population structure and phylogeny across the Colorado Plateau. These new genomic resources provide opportunities to perform genomic scans and investigate the formation and spread of pericentric inversions in a naturally occurring hybrid zone. 
    more » « less
  2. Abstract

    Despite being quite specious (~10,000 extant species), birds have a fairly uniform genome size and karyotype (including the common occurrence of microchromosomes) relative to other vertebrate lineages. Storks (Family Ciconiidae) are a charismatic and distinct group of large wading birds with nearly worldwide distribution but few genomic resources. Here we present an annotated chromosome-level reference genome and chromosome orthology analysis for the wood stork (Mycteria americana), a species that has been federally protected under the Endangered Species Act since 1984. The annotated chromosome-level reference assembly was produced using the blood of a wild female wood stork chick, has a length of 1.35 Gb, a contig N50 of 37 Mb, a scaffold N50 of 80 Mb, and a BUSCO score of 98.8%. We identified 31 autosomal pairs and two sex chromosomes in the wood stork genome, but failed to identify four additional autosomal microchromosomes previously found via karyotyping. Orthology analyses confirmed reported synapomorphies unique to storks and identified the chromosomes participating in these fusions. This study highlights the difficulty and potential problems associated with delineating microchromosomes in reference genome assemblies. It also provides a foundation for studying karyotype evolution in the core water bird clade that includes penguins, albatrosses, storks, cormorants, herons, and ibises. Finally, our reference genome will allow for numerous genomic studies, such as genome-wide association studies of local adaptation, that will aid in wood stork conservation.

     
    more » « less
  3. Abstract Lytechinus variegatus is a camarodont sea urchin found widely throughout the western Atlantic Ocean in a variety of shallow-water marine habitats. Its distribution, abundance, and amenability to developmental perturbation make it a popular model for ecologists and developmental biologists. Here, we present a chromosomal-level genome assembly of L. variegatus generated from a combination of PacBio long reads, 10× Genomics sequencing, and HiC chromatin interaction sequencing. We show L. variegatus has 19 chromosomes with an assembly size of 870.4 Mb. The contiguity and completeness of this assembly are reflected by a scaffold length N50 of 45.5 Mb and BUSCO completeness score of 95.5%. Ab initio and transcript-informed gene modeling and annotation identified 27,232 genes with an average gene length of 12.6 kb, comprising an estimated 39.5% of the genome. Repetitive regions, on the other hand, make up 45.4% of the genome. Physical mapping of well-studied developmental genes onto each chromosome reveals nonrandom spatial distribution of distinct genes and gene families, which provides insight into how certain gene families may have evolved and are transcriptionally regulated in this species. Lastly, aligning RNA-seq and ATAC-seq data onto this assembly demonstrates the value of highly contiguous, complete genome assemblies for functional genomics analyses that is unattainable with fragmented, incomplete assemblies. This genome will be of great value to the scientific community as a resource for genome evolution, developmental, and ecological studies of this species and the Echinodermata. 
    more » « less
  4. Abstract

    Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families. Using the latest advances in genome sequencing and assembly methods, we generated one of the highest-quality squamate genomes to date for the leopard gecko, Eublepharis macularius (Eublepharidae). We compared this assembly to the previous, short-read only, E. macularius reference genome published in 2016 and examined potential factors within the assembly influencing contiguity of genome assemblies using PacBio HiFi data. Briefly, the read N50 of the PacBio HiFi reads generated for this study was equal to the contig N50 of the previous E. macularius reference genome at 20.4 kilobases. The HiFi reads were assembled into a total of 132 contigs, which was further scaffolded using HiC data into 75 total sequences representing all 19 chromosomes. We identified 9 of the 19 chromosomal scaffolds were assembled as a near-single contig, whereas the other 10 chromosomes were each scaffolded together from multiple contigs. We qualitatively identified that the percent repeat content within a chromosome broadly affects its assembly contiguity prior to scaffolding. This genome assembly signifies a new age for squamate genomics where high-quality reference genomes rivaling some of the best vertebrate genome assemblies can be generated for a fraction of previous cost estimates. This new E. macularius reference assembly is available on NCBI at JAOPLA010000000.

     
    more » « less
  5. Abstract Background

    The blue catfish is of great value in aquaculture and recreational fisheries. The F1 hybrids of female channel catfish (Ictalurus punctatus) × male blue catfish (Ictalurusfurcatus) have been the primary driver of US catfish production in recent years because of superior growth, survival, and carcass yield. The channel–blue hybrid also provides an excellent model to investigate molecular mechanisms of environment-dependent heterosis. However, transcriptome and methylome studies suffered from low alignment rates to the channel catfish genome due to divergence, and the genome resources for blue catfish are not publicly available.

    Results

    The blue catfish genome assembly is 841.86 Mbp in length with excellent continuity (8.6 Mbp contig N50, 28.2 Mbp scaffold N50) and completeness (98.6% Eukaryota and 97.0% Actinopterygii BUSCO). A total of 30,971 protein-coding genes were predicted, of which 21,781 were supported by RNA sequencing evidence. Phylogenomic analyses revealed that it diverged from channel catfish approximately 9 million years ago with 15.7 million fixed nucleotide differences. The within-species single-nucleotide polymorphism (SNP) density is 0.32% between the most aquaculturally important blue catfish strains (D&B and Rio Grande). Gene family analysis discovered significant expansion of immune-related families in the blue catfish lineage, which may contribute to disease resistance in blue catfish.

    Conclusions

    We reported the first high-quality, chromosome-level assembly of the blue catfish genome, which provides the necessary genomic tool kit for transcriptome and methylome analysis, SNP discovery and marker-assisted selection, gene editing and genome engineering, and reproductive enhancement of the blue catfish and hybrid catfish.

     
    more » « less