The hydrofluorination of alkenes represents an attractive strategy for the synthesis of aliphatic fluorides. This approach provides a direct means to form C(sp3)–F bonds selectively from readily available alkenes. Nonetheless, conducting hydrofluorination using nucleophilic fluorine sources poses significant challenges due to the low acidity and high toxicity associated with HF and poor nucleophilicity of fluoride. In this study, we present a new Co(salen)-catalyzed hydrofluorination of simple alkenes, utilizing Et3N·3HF as the sole source of both hydrogen and fluorine. This process operates via a polar- radical-polar crossover mechanism. We also demonstrated the versatility of this method by effectively converting a diverse array of simple and activated alkenes with varying degrees of substitution into hydrofluorinated products. Furthermore, we successfully applied this methodology to 18F-hydrofluorination reactions, enabling the introduction of 18F into potential radi- opharmaceuticals. Our mechanistic investigations, conducted using rotating disk electrode voltammetry and DFT calcula- tions, unveiled the involvement of both carbocation and CoIV–alkyl species as viable intermediates during the fluorination step, and the contribution of each pathway depends on the structure of the starting alkene.
more »
« less
Stereoretention in styrene heterodimerisation promoted by one-electron oxidants
Radical cations generated from the oxidation of CC π-bonds are synthetically useful reactive intermediates for C–C and C–X bond formation. Radical cation formation, induced by sub-stoichiometric amounts of external oxidant, are important intermediates in the Woodward–Hoffmann thermally disallowed [2 + 2] cycloaddition of electron-rich alkenes. Using density functional theory (DFT), we report the detailed mechanisms underlying the intermolecular heterodimerisation of anethole and β-methylstyrene to give unsymmetrical, tetra-substituted cyclobutanes. Reactions between trans -alkenes favour the all-trans adduct, resulting from a kinetic preference for anti -addition reinforced by reversibility at ambient temperatures since this is also the thermodynamic product; on the other hand, reactions between a trans -alkene and a cis -alkene favour syn -addition, while exocyclic rotation in the acyclic radical cation intermediate is also possible since C–C forming barriers are higher. Computations are consistent with the experimental observation that hexafluoroisopropanol ( HFIP ) is a better solvent than acetonitrile, in part due to its ability to stabilise the reduced form of the hypervalent iodine initiator by hydrogen bonding, but also through the stabilisation of radical cationic intermediates along the reaction coordinate.
more »
« less
- Award ID(s):
- 1955876
- PAR ID:
- 10316174
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 11
- Issue:
- 34
- ISSN:
- 2041-6520
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The synthesis of a macrocyclic Ru carbene catalyst for selective cross alkene metathesis is reported. The new catalyst showed different reactivity for various type 1 alkenes in homodimerization which correlated with the aggregrate size of the allylic substituent. The altered reactivity profile allowed for selective product formation in competition cross alkene metathesis between two different type 1 alkenes and tert-butyl acrylate. Selectivity in these reactions is attributed to the ability of the macrocyclic catalyst to differentiate alkenes based on their size. Two preparative examples of cross metathesis with the macrocyclic catalyst are also provided.more » « less
-
null (Ed.)Although synthetic organic electrochemistry (EC) has advanced significantly, net redox neutral electrosynthesis is quite rare. Two approaches have been employed to achieve this type of electrosynthesis. One relies on turnover of the product by the reactant in a chain mechanism. The other involves both oxidation on the anode and reduction on the cathode in which the radical cation or the radical anion of the product has to migrate between two electrodes. Herein, a home-built electrochemistry/mass spectrometry (EC/MS) platform was used to generate an N -cyclopropylaniline radical cation electrochemically and to monitor its reactivity toward alkenes by mass spectrometry (MS), which led to the discovery of a new redox neutral reaction of intermolecular [3 + 2] annulation of N -cyclopropylanilines and alkenes to provide an aniline-substituted 5-membered carbocycle via direct electrolysis (yield up to 81%). A chain mechanism, involving the regeneration of the substrate radical cation and the formation of the neutral product, is shown to be responsible for promoting such a redox neutral annulation reaction, as supported by experimental evidence of EC/MS.more » « less
-
Abstract Chemo-switchable catalytic [2+2+2] cycloaddition of alkenes with formaldimines is reported. Bis(tosylamido)methane (BTM) and 1,2-ditosyl-1,2-diazetidine (DTD), two bench-stable precursors for highly reactive tosylformaldimine, have been identified to be effective. BTM worked as a selective releaser of the formaldimine for catalytic [2+2+2] reactions toward hexahydropyrimidine products via a presumable ‘imine–alkene–imine’ addition. A unique catalytic retro-[2+2] reaction of DTD was used and has enabled a proposed ‘imine–alkene–alkene’ pathway with high chemoselectivity for the synthesis of 2,4-diarylpiperidine derivatives. The two alternative processes are catalyzed by the simple and environmentally benign catalysts InCl3 and FeBr2, respectively.more » « less
-
null (Ed.)A multi-component radical addition strategy enables difunctionalization of alkenes with heteroarenes and a variety of radical precursors, including N 3 , P(O)R 2 , and CF 3 . This unified approach for coupling diverse classes of electrophilic radicals and heteroarenes to vinyl ethers allows for direct, vicinal C–C as well as C–N, C–P, and C–R f bond formation.more » « less
An official website of the United States government

