Abstract In this paper, we study the problem of learning the weights of a deep convolutional neural network. We consider a network where convolutions are carried out over non-overlapping patches. We develop an algorithm for simultaneously learning all the kernels from the training data. Our approach dubbed deep tensor decomposition (DeepTD) is based on a low-rank tensor decomposition. We theoretically investigate DeepTD under a realizable model for the training data where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to planted convolutional kernels. We show that DeepTD is sample efficient and provably works as soon as the sample size exceeds the total number of convolutional weights in the network.
more »
« less
End-to-end Learning of a Convolutional Neural Network via Deep Tensor Decomposition.
In this paper we study the problem of learning the weights of a deep convolutional neural network. We consider a network where convolutions are carried out over non-overlapping patches with a single kernel in each layer. We develop an algorithm for simultaneously learning all the kernels from the training data. Our approach dubbed Deep Tensor Decomposition (DeepTD1 ) is based on a rank-1 tensor decomposition. We theoretically investigate DeepTD under a realizable model for the training data where the inputs are chosen i.i.d. from a Gaussian distribution and the labels are generated according to planted convolutional kernels. We show that DeepTD is data-efficient and provably works as soon as the sample size exceeds the total number of convolutional weights in the network. We carry out a variety of numerical experiments to investigate the effectiveness of DeepTD and verify our theoretical findings.
more »
« less
- PAR ID:
- 10316298
- Date Published:
- Journal Name:
- Information and inference
- ISSN:
- 2049-8764
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Normalization techniques have become a basic component in modern convolutional neural networks (ConvNets). In particular, many recent works demonstrate that promoting the orthogonality of the weights helps train deep models and improve robustness. For ConvNets, most existing methods are based on penalizing or normalizing weight matrices derived from concatenating or flattening the convolutional kernels. These methods often destroy or ignore the benign convolutional structure of the kernels; therefore, they are often expensive or impractical for deep ConvNets. In contrast, we introduce a simple and efficient Convolutional Normalization'' (ConvNorm) method that can fully exploit the convolutional structure in the Fourier domain and serve as a simple plug-and-play module to be conveniently incorporated into any ConvNets. Our method is inspired by recent work on preconditioning methods for convolutional sparse coding and can effectively promote each layer's channel-wise isometry. Furthermore, we show that our ConvNorm can reduce the layerwise spectral norm of the weight matrices and hence improve the Lipschitzness of the network, leading to easier training and improved robustness for deep ConvNets. Applied to classification under noise corruptions and generative adversarial network (GAN), we show that the ConvNorm improves the robustness of common ConvNets such as ResNet and the performance of GAN. We verify our findings via numerical experiments on CIFAR and ImageNet. Our implementation is available online at \url{https://github.com/shengliu66/ConvNorm}.more » « less
-
Zhang, Yanqing (Ed.)Learning from complex, multidimensional data has become central to computational mathematics, and among the most successful high-dimensional function approximators are deep neural networks (DNNs). Training DNNs is posed as an optimization problem to learn network weights or parameters that well-approximate a mapping from input to target data. Multiway data or tensors arise naturally in myriad ways in deep learning, in particular as input data and as high-dimensional weights and features extracted by the network, with the latter often being a bottleneck in terms of speed and memory. In this work, we leverage tensor representations and processing to efficiently parameterize DNNs when learning from high-dimensional data. We propose tensor neural networks (t-NNs), a natural extension of traditional fully-connected networks, that can be trained efficiently in a reduced, yet more powerful parameter space. Our t-NNs are built upon matrix-mimetic tensor-tensor products, which retain algebraic properties of matrix multiplication while capturing high-dimensional correlations. Mimeticity enables t-NNs to inherit desirable properties of modern DNN architectures. We exemplify this by extending recent work on stable neural networks, which interpret DNNs as discretizations of differential equations, to our multidimensional framework. We provide empirical evidence of the parametric advantages of t-NNs on dimensionality reduction using autoencoders and classification using fully-connected and stable variants on benchmark imaging datasets MNIST and CIFAR-10.more » « less
-
This study addresses the problem of convolutional kernel learning in univariate, multivariate, and multidimensional time series data, which is crucial for interpreting temporal patterns in time series and supporting downstream machine learning tasks. First, we propose formulating convolutional kernel learning for univariate time series as a sparse regression problem with a non-negative constraint, leveraging the properties of circular convolution and circulant matrices. Second, to generalize this approach to multivariate and multidimensional time series data, we use tensor computations, reformulating the convolutional kernel learning problem in the form of tensors. This is further converted into a standard sparse regression problem through vectorization and tensor unfolding operations. In the proposed methodology, the optimization problem is addressed using the existing non-negative subspace pursuit method, enabling the convolutional kernel to capture temporal correlations and patterns. To evaluate the proposed model, we apply it to several real-world time series datasets. On the multidimensional ridesharing and taxi trip data from New York City and Chicago, the convolutional kernels reveal interpretable local correlations and cyclical patterns, such as weekly seasonality. For the monthly temperature time series data in North America, the proposed model can quantify the yearly seasonality and make it comparable across different decades. In the context of multidimensional fluid flow data, both local and nonlocal correlations captured by the convolutional kernels can reinforce tensor factorization, leading to performance improvements in fluid flow reconstruction tasks. Thus, this study lays an insightful foundation for automatically learning convolutional kernels from time series data, with an emphasis on interpretability through sparsity and non-negativity constraints.more » « less
-
Abstract We analyze the dynamics of finite width effects in wide but finite feature learning neural networks. Starting from a dynamical mean field theory description of infinite width deep neural network kernel and prediction dynamics, we provide a characterization of the fluctuations of the dynamical mean field theory order parameters over random initializations of the network weights. Our results, while perturbative in width, unlike prior analyses, are non-perturbative in the strength of feature learning. We find that once the mean field/µP parameterization is adopted, the leading finite size effect on the dynamics is to introduce initialization variance in the predictions and feature kernels of the networks. In the lazy limit of network training, all kernels are random but static in time and the prediction variance has a universal form. However, in the rich, feature learning regime, the fluctuations of the kernels and predictions are dynamically coupled with a variance that can be computed self-consistently. In two layer networks, we show how feature learning can dynamically reduce the variance of the final tangent kernel and final network predictions. We also show how initialization variance can slow down online learning in wide but finite networks. In deeper networks, kernel variance can dramatically accumulate through subsequent layers at large feature learning strengths, but feature learning continues to improve the signal-to-noise ratio of the feature kernels. In discrete time, we demonstrate that large learning rate phenomena such as edge of stability effects can be well captured by infinite width dynamics and that initialization variance can decrease dynamically. For convolutional neural networks trained on CIFAR-10, we empirically find significant corrections to both the bias and variance of network dynamics due to finite width.more » « less
An official website of the United States government

