null
(Ed.)
Earthquake prediction is the holy grail of seismology. Many previous studies have searched for robust precursory signals to inform us of imminent earthquakes, the most significant of which are seen in laboratory experiments as temporal changes in pressure and shear wave velocities during the seismic cycle. Similar changes are seen in natural faults and the surrounding structurally complex network of fractures with nested hierarchy of localized deformation, referred to as fault damage zone. However, little is known whether such temporal changes in material properties contains any precursory signals for imminent earthquakes.Conversely, the effect of precursory velocity changes on the seismic cycle is not well understood. By imposing shear wave velocity changes in fault damage zones, we investigate the effects of these precursors on multiple stages of the seismic cycle, including nucleation, coseismic, postseismic, and interseismic stages. We perform 2D fully dynamic earthquake cycle simulations with a fault-parallel damage zone for strike-slip fault systems with antiplane geometry. The fault is governed by rate-state-dependent friction laws, and the fault damage zone material is considered elastic. Our preliminary results show that the temporal onset of shear wave velocity drop causes a reduction in earthquake recurrence intervals over the seismic cycle. Furthermore, a dynamic earthquake rupture within the seismic cycle terminates much faster and abruptly in models with precursory velocity changes. We will also discuss how the precursory velocity changes affect the fault-slip behavior, including fast-slip, slow-slip, and aseismic creep, for different amplitudes of shear wave velocity changes at different compliance contrast of the fault damage zones. Our results highlight the importance of short and long-term monitoring of fault zone structures for better assessment of regional seismic hazard.
more »
« less
An official website of the United States government

