skip to main content


Title: Impact of salinization on lake stratification and spring mixing
Anthropogenic freshwater salinization affects thousands of lakes worldwide, and yet little is known about how salt loading may shift timing of lake stratification and spring mixing in dimictic lakes. Here, we investigate the impact of salinization on mixing in Lakes Mendota and Monona, Wisconsin, by deploying under-ice buoys to record salinity gradients, using an analytical approach to quantify salinity thresholds that prevent spring mixing, and running an ensemble of vertical one-dimensional hydrodynamic lake models (GLM, GOTM, and Simstrat) to investigate the long-term impact of winter salt loading on mixing and stratification. We found that spring salinity gradients between surface and bottom waters persist up to a month after ice-off, and that theory predicts a salinity gradient of 1.3–1.4 g kg-1 would prevent spring mixing. Numerical models project that salt loading delays spring mixing and increases water column stability, with ramifications for oxygenation of bottom waters, biogeochemistry, and lake habitability.  more » « less
Award ID(s):
2025982 1759865
NSF-PAR ID:
10316439
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Limnology and Oceanography Letters
ISSN:
2378-2242
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Freshwater salinization from anthropogenic activities threatens water quality and habitat suitability for many lakes and rivers in North America. Recognizing that salinization is a stress on freshwater environments globally, research on watershed salt transport is necessary for informed management strategies. Prior to this research, there were few studies that examined salt export regimes along a river–lake continuum to investigate the drivers, temporal dynamics, and modulators of freshwater salinization. Here, we use high-frequency in situ monitoring to assess specific conductance–discharge (cQ) relationships, chloride concentrations and fluxes, and the role of lakes in downstream salt transport. The Upper Yahara River Watershed in southern Wisconsin, USA, is a mixed urban and agricultural watershed where the lakes' chloride concentrations have risen from < 5 mg L−1 in the 1940s to > 50–80 mg L−1 in 2021. Our results suggest cQ behavior depends on land use, with urban areas exhibiting more frequent mobilization events during stormflow and agricultural areas exhibiting predominantly dilution dynamics. In addition, chloride loading is driven by hydrology and watershed size whereas concentrations and yields are a function of anthropogenic drivers like urbanization. We demonstrate how an in-network lake attenuates downstream salinity, dampening the hydrologic, anthropogenic, and seasonal patterns observed in rivers upstream of the lake. Importantly, biogeochemical processes in lakes overlay a seasonal signal on salinity that must be considered when investigating temporal dynamics of anthropogenic salinization. This research contributes to understanding of temporal dynamics of salt export through watersheds and can be used to inform management strategies for habitat protection. 
    more » « less
  2. Abstract

    In this study, we report on turbulent mixing observed during the annual stratification cycle in the hypolimnetic waters of Lake Michigan (USA), highlighting stratified, convective, and transitional mixing periods. Measurements were collected using a combination of moored instruments and microstructure profiles. Observations during the stratified summer showed a shallow, wind‐driven surface mixed layer (SML) with locally elevated dissipation rates in the thermocline () potentially associated with internal wave shear. Below the thermocline, turbulence was weak () and buoyancy‐suppressed (< 8.5), with low hypolimnetic mixing rates () limiting benthic particle delivery. During the convective winter period, a diurnal cycle of radiative convection was observed over each day of measurement, where temperature overturns were directly correlated with elevated turbulence levels throughout the water column (;). A transitional mixing period was observed for spring conditions when surface temperatures were near the temperature of maximum density (TMD3.98) and the water column began to stably stratify. While small temperature gradients allowed strong mixing over the transitional period (), hypolimnetic velocity shear was overwhelmed by weakly stable stratification (;), limiting the development of the SML. These results highlight the importance of radiative convection for breaking down weak hypolimnetic stratification and driving energetic, full water column mixing during a substantial portion of the year (>100 days at our sample site). Ongoing surface water warming in the Laurentian Great Lakes is significantly reducing the annual impact of convective mixing, with important consequences for nutrient cycling, primary production, and benthic‐pelagic coupling.

     
    more » « less
  3. Abstract

    Future increases in the frequency of tidal flooding due to sea level rise (SLR) are likely to affect pore water salinities in coastal aquifers. In this study, we investigate the impact of increased tidal flooding frequency on salinity and flow dynamics in coastal aquifers using numerical variable‐density variably‐saturated groundwater flow and salt transport models. Short (sub‐daily) and long (decadal) period tides are combined with SLR projections to drive continuous 80‐year models of flow and salt transport. Results show that encroaching intertidal zones lead to both periodic and long‐term vertical salinization of the upper aquifer. Salinization of the upper aquifer due to tidal flooding forces the lower interface seaward, even under SLR. System dynamics are controlled by the interplay between SLR and long period tidal forcing associated with perigean spring tides and the 18.6‐year lunar nodal cycle. Periodic tidal flooding substantially enhances intertidal saltwater‐freshwater mixing, resulting in a 6‐ to 10‐fold expansion of the intertidal saltwater‐freshwater mixing area across SLR scenarios. The onset of the expansion coincides with extreme high water levels resulting from lunar nodal cycling of tidal constituent amplitudes. The findings are the first to demonstrate the combined effects of gradual SLR and short and long period tides on aquifer salinity distributions, and reveal competing influences of SLR on saltwater intrusion. The results are likely to have important implications for coastal ocean chemical fluxes and groundwater resources as tidal flooding intensifies worldwide.

     
    more » « less
  4. Scripts, model configurations and outputs to process the data and recreate the figures from Ladwig, R., Rock, L.A, Dugan, H.A. (-): Impact of salinization on lake stratification and spring mixing. This repository includes the setup and output from the lake model ensemble (GLM, GOTM, Simstrat) ran on the lakes Mendota and Monona. Scripts to run the models are located under /numerical and the scripts to process the results for the discussion of the paper are in the top main repository. The scripts to derive the theoretical solution are located under /analytical. Buoy monitoring data are located under /fieldmonitoring. The final figures are located under /figs_HD.

     
    more » « less
  5. Abstract

    A Finite Volume Community Ocean Model is used to investigate how wind impacts the circulation and evolution of a freshwater plume from Mississippi River diversion in the Lake Pontchartrain Estuary. Results show that northerly and southerly winds tend to stretch the plume in the east‐west directions, while easterly and westerly winds constrain the plume in the north‐south directions. Increasing wind magnitude tends to increase the total salt content of the estuary except under weak westerly wind (<6 m/s) during which salt content decreases. A no‐motion middepth interface is found (by the model and verified by the data), separating the top layer downwind flow and bottom layer upwind flow. Increasing wind magnitude can enhance the two‐layered flows and lower the no‐motion plane between the two opposite flows. Apparent small leakage of the river water through the diversion structure prior to its opening is found to impact the vertical structure of flows and salinity: Mixing is facilitated by the large amount of freshwater leaked into the lake prior to the opening of the diversion; wind‐driven gyres are diminished; the average potential energy demand, a quantity used to measure the vertical stratification, is reduced to very low values; more deviation from the quasi‐steady state balance tends to occur; and a total of 3.7 × 108kg of salt is reduced during the opening period of the Bonnet Carré Spillway. The Lake Pontchartrain Estuary is completely dominated by the river water within about 25 days, when salinity drops from an average value of 4 g/kg to essentially zero.

     
    more » « less