skip to main content

This content will become publicly available on October 14, 2022

Title: A Workflow for Rapid Unbiased Quantification of Fibrillar Feature Alignment in Biological Images
Measuring the organization of the cellular cytoskeleton and the surrounding extracellular matrix (ECM) is currently of wide interest as changes in both local and global alignment can highlight alterations in cellular functions and material properties of the extracellular environment. Different approaches have been developed to quantify these structures, typically based on fiber segmentation or on matrix representation and transformation of the image, each with its own advantages and disadvantages. Here we present AFT − Alignment by Fourier Transform , a workflow to quantify the alignment of fibrillar features in microscopy images exploiting 2D Fast Fourier Transforms (FFT). Using pre-existing datasets of cell and ECM images, we demonstrate our approach and compare and contrast this workflow with two other well-known ImageJ algorithms to quantify image feature alignment. These comparisons reveal that AFT has a number of advantages due to its grid-based FFT approach. 1) Flexibility in defining the window and neighborhood sizes allows for performing a parameter search to determine an optimal length scale to carry out alignment metrics. This approach can thus easily accommodate different image resolutions and biological systems. 2) The length scale of decay in alignment can be extracted by comparing neighborhood sizes, revealing the overall distance that more » features remain anisotropic. 3) The approach is ambivalent to the signal source, thus making it applicable for a wide range of imaging modalities and is dependent on fewer input parameters than segmentation methods. 4) Finally, compared to segmentation methods, this algorithm is computationally inexpensive, as high-resolution images can be evaluated in less than a second on a standard desktop computer. This makes it feasible to screen numerous experimental perturbations or examine large images over long length scales. Implementation is made available in both MATLAB and Python for wider accessibility, with example datasets for single images and batch processing. Additionally, we include an approach to automatically search parameters for optimum window and neighborhood sizes, as well as to measure the decay in alignment over progressively increasing length scales. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Frontiers in Computer Science
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this study, we discuss the characterization and quantification of composite microstructures formed by the external field manipulation of high aspect ratio magnetic particles in an elastomeric matrix. In our prior work, we have demonstrated that the simultaneous application of electric and magnetic fields on hard magnetic particles with geometric anisotropy can create a hierarchy of structures at different length scales, which can be used to achieve a wide range of properties. We aim to characterize these hierarchical structures and relate them to final composite properties so we can achieve our ultimate goal of designing a material for amore »prescribed performance. The complex particle structures are formed during processing by using electric and magnetic fields, and they are then locked-in by curing the polymer matrix around the particles. The model materials used in the study are barium hexaferrite (BHF) particles and polydimethylsiloxane (PDMS) elastomer. BHF was selected for its hard magnetic properties and high geometric anisotropy. PDMS was selected for its good mechanical properties and its tunable curing kinetics. The resulting BHF-PDMS composites are magnetoactive, i.e., they will deform and actuate in response to magnetic fields. In order to investigate the resulting particle orientation, distribution and alignment and to predict the composite’s macro scale properties, we developed techniques to quantify the particle structures.

    The general framework we developed allows us to quantify and directly compare the microstructures created within the composites. To identify structures at the different length scales, images of the composite are taken using both optical microscopy and scanning electron microscopy. We then use ImageJ to analyze them and gather data on particle size, location, and orientation angle. The data is then exported to MATLAB, and is used to run a Minimum Spanning Tree Algorithm to classify the particle structures, and von Mises Distributions to quantify the alignment of said structures.

    Important findings show 1) the ability to control structure using a combination of external electric, magnetic and thermal fields; 2) that electric fields promote long range order while magnetic fields promote short-range order; and 3) the resulting hierarchical structure greatly influence bulk material properties. Manipulating particles in a composite material is technologically important because changes in microstructure can alter the properties of the bulk material. The multifield processing we investigate here can form the basis for next generation additive manufacturing platforms where desired properties are tailored locally through in-situ hierarchical control of particle arrangements.

    « less
  2. Background. An assumption of Digital Image Correlation (DIC) is that the displacement field within each subset is relatively smooth, captured with reasonable accuracy by, for example, linear or quadratic shape functions. Although this assumption works well for many materials, it becomes problematic for heterogeneous materials, such as fiber networks, wherein the length scale of heterogeneity matches the size of a subset. Objective. Here we applied DIC to fibrous networks made of collagen, for which displacements at the scale of a subset are highly heterogeneous, but errors caused by the heterogeneity are difficult to quantify. We developed a method to quantifymore »such errors. Methods. We began by generating a synthetic three-dimensional fiber network with structure matching that of gels made of fibrous collagen. We then formulated an algorithm to mimic the way in which a confocal microscope images the fibers at its focal plane, thereby generating synthetic images similar to those obtained in experiments. Displacement boundary conditions were applied to the synthetic fiber networks, and the resulting displacement fields were computed using a finite element solver. DIC was applied to the synthetic images, and displacements were compared to the data from the finite element method, enabling rigorous quantification of error. Results. Point-wise errors in the DIC-measured displacements were substantial, often exceeding 40%, but over regions far larger than the length scales of heterogeneity or the DIC subset size, errors were modest, e.g., ≤15%. Conclusions. Although DIC can accurately measure displacements of fiber networks at length scales larger than the subset window, quantification of mechanical behavior at the scale of material heterogeneity will require new methods to complement or replace the use of DIC.« less
  3. Fibre topography of the extracellular matrix governs local mechanical properties and cellular behaviour including migration and gene expression. While quantifying properties of the fibrous network provides valuable data that could be used across a breadth of biomedical disciplines, most available techniques are limited to two dimensions and, therefore, do not fully capture the architecture of three-dimensional (3D) tissue. The currently available 3D techniques have limited accuracy and applicability and many are restricted to a specific imaging modality. To address this need, we developed a novel fibre analysis algorithm capable of determining fibre orientation, fibre diameter and fibre branching on amore »voxel-wise basis in image stacks with distinct fibre populations. The accuracy of the technique is demonstrated on computer-generated phantom image stacks spanning a range of features and complexities, as well as on two-photon microscopy image stacks of elastic fibres in bovine tendon and dermis. Additionally, we propose a measure of axial spherical variance which can be used to define the degree of fibre alignment in a distribution of 3D orientations. This method provides a useful tool to quantify orientation distributions and variance on image stacks with distinguishable fibres or fibre-like structures.« less
  4. Abstract Background Cryo-electron tomography is an important and powerful technique to explore the structure, abundance, and location of ultrastructure in a near-native state. It contains detailed information of all macromolecular complexes in a sample cell. However, due to the compact and crowded status, the missing edge effect, and low signal to noise ratio (SNR), it is extremely challenging to recover such information with existing image processing methods. Cryo-electron tomogram simulation is an effective solution to test and optimize the performance of the above image processing methods. The simulated images could be regarded as the labeled data which covers a widemore »range of macromolecular complexes and ultrastructure. To approximate the crowded cellular environment, it is very important to pack these heterogeneous structures as tightly as possible. Besides, simulating non-deformable and deformable components under a unified framework also need to be achieved. Result In this paper, we proposed a unified framework for simulating crowded cryo-electron tomogram images including non-deformable macromolecular complexes and deformable ultrastructures. A macromolecule was approximated using multiple balls with fixed relative positions to reduce the vacuum volume. A ultrastructure, such as membrane and filament, was approximated using multiple balls with flexible relative positions so that this structure could deform under force field. In the experiment, 400 macromolecules of 20 representative types were packed into simulated cytoplasm by our framework, and numerical verification proved that our method has a smaller volume and higher compression ratio than the baseline single-ball model. We also packed filaments, membranes and macromolecules together, to obtain a simulated cryo-electron tomogram image with deformable structures. The simulated results are closer to the real Cryo-ET, making the analysis more difficult. The DOG particle picking method and the image segmentation method are tested on our simulation data, and the experimental results show that these methods still have much room for improvement. Conclusion The proposed multi-ball model can achieve more crowded packaging results and contains richer elements with different properties to obtain more realistic cryo-electron tomogram simulation. This enables users to simulate cryo-electron tomogram images with non-deformable macromolecular complexes and deformable ultrastructures under a unified framework. To illustrate the advantages of our framework in improving the compression ratio, we calculated the volume of simulated macromolecular under our multi-ball method and traditional single-ball method. We also performed the packing experiment of filaments and membranes to demonstrate the simulation ability of deformable structures. Our method can be used to do a benchmark by generating large labeled cryo-ET dataset and evaluating existing image processing methods. Since the content of the simulated cryo-ET is more complex and crowded compared with previous ones, it will pose a greater challenge to existing image processing methods.« less
  5. Contact guidance is a major physical cue that modulates cancer cell morphology and motility, and is directly linked to the prognosis of cancer patients. Under physiological conditions, particularly in the three-dimensional (3D) extracellular matrix (ECM), the disordered assembly of fibers presents a complex directional bias to the cells. It is unclear how cancer cells respond to these noncoherent contact guidance cues. Here we combine quantitative experiments, theoretical analysis, and computational modeling to study the morphological and migrational responses of breast cancer cells to 3D collagen ECM with varying degrees of fiber alignment. We quantify the strength of contact guidance usingmore »directional coherence of ECM fibers, and find that stronger contact guidance causes cells to polarize more strongly along the principal direction of the fibers. Interestingly, sensitivity to contact guidance is positively correlated with cell aspect ratio, with elongated cells responding more strongly to ECM alignment than rounded cells. Both experiments and simulations show that cell–ECM adhesions and actomyosin contractility modulate cell responses to contact guidance by inducing a population shift between rounded and elongated cells. We also find that cells rapidly change their morphology when navigating the ECM, and that ECM fiber coherence modulates cell transition rates between different morphological phenotypes. Taken together, we find that subcellular processes that integrate conflicting mechanical cues determine cell morphology, which predicts the polarization and migration dynamics of cancer cells in 3D ECM.

    « less