skip to main content

This content will become publicly available on January 1, 2023

Title: Molecular phylogenetic analysis of Neodiplostomum and Fibricola (Digenea, Diplostomidae) does not support host-based systematics
Abstract Fibricola and Neodiplostomum are diplostomid genera with very similar morphology that are currently separated based on their definitive hosts. Fibricola spp. are normally found in mammals, while Neodiplostomum spp. typically parasitize birds. Previously, no DNA sequence data was available for any member of Fibricola . We generated nuclear ribosomal and mtDNA sequences of Fibricola cratera (type-species), Fibricola lucidum and 6 species of Neodiplostomum . DNA sequences were used to examine phylogenetic interrelationships among Fibricola and Neodiplostomum and re-evaluate their systematics. Molecular phylogenies and morphological study suggest that Fibricola should be considered a junior synonym of Neodiplostomum . Therefore, we synonymize the two genera and transfer all members of Fibricola into Neodiplostomum . Specimens morphologically identified as Neodiplostomum cratera belonged to 3 distinct phylogenetic clades based on mitochondrial data. One of those clades also included sequences of specimens identified morphologically as Neodiplostomum lucidum . Further study is necessary to resolve the situation regarding the morphology of N. cratera . Our results demonstrated that some DNA sequences of N. americanum available in GenBank originate from misidentified Neodiplostomum banghami . Molecular phylogentic data revealed at least 2 independent host-switching events between avian and mammalian hosts in the evolutionary history of Neodiplostomum ; more » however, the directionality of these host-switching events remains unclear. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1852459
Publication Date:
NSF-PAR ID:
10316530
Journal Name:
Parasitology
ISSN:
0031-1820
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Alaria, Didelphodiplostomum and Pharyngostomoides are among genera of diplostomid digeneans known to parasitize mammalian definitive hosts. Despite numerous recent molecular phylogenetic studies of diplostomids, limited DNA sequence data is available from diplostomids parasitic in mammals. Herein, we provide the first 28S rDNA and cox1 mtDNA sequences from morphologically identified, adult specimens of Didelphodiplostomum and Pharyngostomoides. Newly generated 28S sequences were used to infer the phylogenetic interrelationships of these two genera among other major lineages of diplostomoideans. The phylogeny based on 28S and a review of morphology clearly suggests that Pharyngostomoides should be considered a junior synonym of Alaria, while Didelphodiplostomum should be considered a junior synonym of Tylodelphys. Pharyngostomoides procyonis (type species), Pharyngostomoides adenocephala and Pharyngostomoides dasyuri were transferred into Alaria as Alaria procyonis comb. nov., Alaria adenocephala comb. nov. and Alaria dasyuri comb. nov.; Didelphodiplostomum variabile (type species) and Didelphodiplostomum nunezae were transferred into Tylodelphys as Tylodelphys variabilis comb. nov. and Tylodelphys nunezae comb. nov. In addition, Alaria ovalis comb. nov. (formerly included in Pharyngostomoides) was restored and transferred into Alaria based on a morphological study of well-fixed, adult specimens and the comparison of cox1 DNA sequences among Alaria spp. The diplostomid genus Parallelorchis was restored based onmore »review of morphology.

    « less
  2. Alaria, Didelphodiplostomum and Pharyngostomoides are among genera of diplostomid digeneans known to parasitize mammalian definitive hosts. Despite numerous recent molecular phylogenetic studies of diplostomids, limited DNA sequence data is available from diplostomids parasitic in mammals. Herein, we provide the first 28S rDNA and cox1 mtDNA sequences from morphologically identified, adult specimens of Didelphodiplostomum and Pharyngostomoides. Newly generated 28S sequences were used to infer the phylogenetic interrelationships of these two genera among other major lineages of diplostomoideans. The phylogeny based on 28S and a review of morphology clearly suggests that Pharyngostomoides should be considered a junior synonym of Alaria, while Didelphodiplostomum should be considered a junior synonym of Tylodelphys. Pharyngostomoides procyonis (type species), Pharyngostomoides adenocephala and Pharyngostomoides dasyuri were transferred into Alaria as Alaria procyonis comb. nov., Alaria adenocephala comb. nov. and Alaria dasyuri comb. nov.; Didelphodiplostomum variabile (type species) and Didelphodiplostomum nunezae were transferred into Tylodelphys as Tylodelphys variabilis comb. nov. and Tylodelphys nunezae comb. nov. In addition, Alaria ovalis comb. nov. (formerly included in Pharyngostomoides) was restored and transferred into Alaria based on a morphological study of wellfixed, adult specimens and the comparison of cox1 DNA sequences among Alaria spp. The diplostomid genus Parallelorchis was restored based on reviewmore »of morphology.« less
  3. Wilkerson, Richard (Ed.)
    Abstract The Philopterus Complex includes several lineages of lice that occur on birds. The complex includes the genera Philopterus (Nitzsch, 1818; Psocodea: Philopteridae), Philopteroides (Mey, 2004; Psocodea: Philopteridae), and many other lineages that have sometimes been regarded as separate genera. Only a few studies have investigated the phylogeny of this complex, all of which are based on morphological data. Here we evaluate the utility of nuclear and mitochondrial loci for recovering the phylogeny within this group. We obtained phylogenetic trees from 39 samples of the Philopterus Complex (Psocodea: Philopteridae), using sequences of two nuclear (hyp and TMEDE6) and one mitochondrial (COI) marker. We evaluated trees derived from these genes individually as well as from concatenated sequences. All trees show 20 clearly demarcated taxa (i.e., putative species) divided into five well-supported clades. Percent sequence divergence between putative species (~5–30%) for the COI gene tended to be much higher than those for the nuclear genes (~1–15%), as expected. In cases where species are described, the lineages identified based on molecular divergence correspond to morphologically defined species. In some cases, species that are host generalists exhibit additional underlying genetic variation and such cases need to be explored by further future taxonomic revisions ofmore »the Philopterus Complex.« less
  4. Cochliopodium is a lens-shaped genus of Amoebozoa characterized by a flexi- ble layer of microscopic dorsal scales. Recent taxonomic and molecular studies reported cryptic diversity in this group and suggested that the often-used scale morphology is not a reliable character for species delineation in the genus. Here, we described three freshwater Cochliopodium spp. from the southeast- ern United States based on morphological, immunocytochemistry (ICC), and molecular data. A maximum-likelihood phylogenetic analysis and pairwise com- parison of COI sequences of Cochliopodium species showed that each of these monoclonal cultures were genetically distinct from each other and any described species with molecular data. Two of the new isolates, “crystal UK- YT2” (Cochliopodium crystalli n. sp.) and “crystal-like UK-YT3” (C. jaguari n. sp.), formed a clade with C. larifeili, which all share a prominent microtubule organizing center (MTOC) and have cubical-shaped crystals. The “Marrs Spring UK-YT4” isolate, C. marrii n. sp., was 100% identical to “Cochliopodium sp. SG-2014 KJ569724.” These sequences formed a clade with C. actinophorum and C. arabianum. While the new isolates can be separated morphologically, most of the taxonomic features used in the group show plasticity; therefore, Cochliopodium species can only be reliably identified with the help of molecu- larmore »data.« less
  5. Abstract— Physarieae is a small tribe of herbaceous annual and woody perennial mustards that are mostly endemic to North America, with its members including a large amount of variation in floral, fruit, and chromosomal variation. Building on a previous study of Physarieae based on morphology and ndhF plastid DNA, we reconstructed the evolutionary history of the tribe using new sequence data from two nuclear markers, and compared the new topologies against previously published cpDNA-based phylogenetic hypotheses. The novel analyses included ca. 420 new sequences of ITS and LUMINIDEPENDENS ( LD ) markers for 39 and 47 species, respectively, with sampling accounting for all seven genera of Physarieae, including nomenclatural type species, and 11 outgroup taxa. Maximum parsimony, maximum likelihood, and Bayesian analyses showed that these additional markers were largely consistent with the previous ndh F data that supported the monophyly of Physarieae and resolved two major clades within the tribe, i.e., DDNLS ( Dithyrea , Dimorphocarpa , Nerisyrenia , Lyrocarpa , and Synthlipsis ) and PP ( Paysonia and Physaria ). New analyses also increased internal resolution for some closely related species and lineages within both clades. The monophyly of Dithyrea and the sister relationship of Paysonia to Physaria wasmore »consistent in all trees, with the sister relationship of Nerisyrenia to Lyrocarpa supported by ndhF and ITS, and the positions of Dimorphocarpa and Synthlipsis shifted within the DDNLS Clade depending on the employed data set. Finally, using the strong, new phylogenetic framework of combined cpDNA + nDNA data, we discussed standing hypotheses of trichome evolution in the tribe suggested by ndhF .« less