Alaria, Didelphodiplostomum and Pharyngostomoides are among genera of diplostomid digeneans known to parasitize mammalian definitive hosts. Despite numerous recent molecular phylogenetic studies of diplostomids, limited DNA sequence data is available from diplostomids parasitic in mammals. Herein, we provide the first 28S rDNA and cox1 mtDNA sequences from morphologically identified, adult specimens of Didelphodiplostomum and Pharyngostomoides. Newly generated 28S sequences were used to infer the phylogenetic interrelationships of these two genera among other major lineages of diplostomoideans. The phylogeny based on 28S and a review of morphology clearly suggests that Pharyngostomoides should be considered a junior synonym of Alaria, while Didelphodiplostomum should be considered a junior synonym of Tylodelphys. Pharyngostomoides procyonis (type species), Pharyngostomoides adenocephala and Pharyngostomoides dasyuri were transferred into Alaria as Alaria procyonis comb. nov., Alaria adenocephala comb. nov. and Alaria dasyuri comb. nov.; Didelphodiplostomum variabile (type species) and Didelphodiplostomum nunezae were transferred into Tylodelphys as Tylodelphys variabilis comb. nov. and Tylodelphys nunezae comb. nov. In addition, Alaria ovalis comb. nov. (formerly included in Pharyngostomoides) was restored and transferred into Alaria based on a morphological study of wellfixed, adult specimens and the comparison of cox1 DNA sequences among Alaria spp. The diplostomid genus Parallelorchis was restored based on review of morphology.
more »
« less
Molecular phylogenetic analysis of Neodiplostomum and Fibricola (Digenea, Diplostomidae) does not support host-based systematics
Abstract Fibricola and Neodiplostomum are diplostomid genera with very similar morphology that are currently separated based on their definitive hosts. Fibricola spp. are normally found in mammals, while Neodiplostomum spp. typically parasitize birds. Previously, no DNA sequence data was available for any member of Fibricola . We generated nuclear ribosomal and mtDNA sequences of Fibricola cratera (type-species), Fibricola lucidum and 6 species of Neodiplostomum . DNA sequences were used to examine phylogenetic interrelationships among Fibricola and Neodiplostomum and re-evaluate their systematics. Molecular phylogenies and morphological study suggest that Fibricola should be considered a junior synonym of Neodiplostomum . Therefore, we synonymize the two genera and transfer all members of Fibricola into Neodiplostomum . Specimens morphologically identified as Neodiplostomum cratera belonged to 3 distinct phylogenetic clades based on mitochondrial data. One of those clades also included sequences of specimens identified morphologically as Neodiplostomum lucidum . Further study is necessary to resolve the situation regarding the morphology of N. cratera . Our results demonstrated that some DNA sequences of N. americanum available in GenBank originate from misidentified Neodiplostomum banghami . Molecular phylogentic data revealed at least 2 independent host-switching events between avian and mammalian hosts in the evolutionary history of Neodiplostomum ; however, the directionality of these host-switching events remains unclear.
more »
« less
- Award ID(s):
- 1852459
- PAR ID:
- 10316530
- Date Published:
- Journal Name:
- Parasitology
- ISSN:
- 0031-1820
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Phylogenetics and host‐specificity of the mega‐diverse louse genus Myrsidea (Amblycera: Menoponidae)Abstract MyrsideaWaterston is the most diverse genus of chewing lice, primarily parasitizing perching birds (Passeriformes), which is the most speciose avian order.Myrsideaalso parasitize several hosts from non‐passerine groups, including toucans, barbets, woodpeckers (Piciformes) and hummingbirds (Apodiformes). To examine host specificity, host switching and generic limits, we reconstructed a phylogeny of the avian feather louse genusMyrsideausing DNA sequence data from two fragments of the mitochondrial COI gene and a fragment of the nuclear EF‐1α gene for 152Myrsideaspecimens collected from 23 avian host families. Unlike other highly diverse louse genera, only a small proportion ofMyrsideaspecies parasitize more than one host species. We found that host family has significant phylogenetic signal on theMyrsideaphylogeny. These results suggest thatMyrsideais generally highly host‐specific, with some exceptions where host switching is important. We found that there are two separate groups ofMyrsideathat parasitize toucans, and that both are nested withinMyrsideafound on perching birds, suggesting that these toucan ectoparasites may have arisen from two independent host switching events. Lastly, representatives of the genusRamphasticolaCarriker, which was originally described as a distinct genus due to a suite of morphologically unique characters, falls in with a strongly supported clade ofMyrsideaparasitizingRamphastostoucans, and therefore we definitively placeRamphasticolaas a synonym ofMyrsidea.more » « less
-
Abstract Metacercariae of the genus Posthodiplostomum are often recorded in freshwater fish hosts. While the diversity and taxonomy of this genus are receiving increasing attention in molecular phylogenetic studies, available data remain geographically biased. Most molecular studies of Posthodiplostomum and morphologically similar (neascus) worms originate in North America and Europe and Asia (more than 60% of DNA sequences are from USA and Canada), with few data currently available from the Neotropics, where high host diversity suggests high and under-sampled parasite diversity. In this study, we report molecular and morphological data from metacercariae of Posthodiplostomum in fish in Puerto Rico, where only a single species has been previously reported. Partial sequences of cytochrome c oxidase subunit 1 from metacercariae from Dajaus monticola (native to Puerto Rico) and the introduced fishes Poecilia reticulata , Parachromis managuensis , Lepomis macrochirus and Micropterus salmoides revealed 7 genetically distinct species-level lineages, of which 4 were novel. We report novel molecular life-cycle linkages in Posthodiplostomum macrocotyle (metacercariae in muscle of the cichlid Pa. managuensis ), a species previously known only from adults in birds from South America; and in Posthodiplostomum sp. 23 (metacercariae in poeciliids), which has recently been found in Ardea herodias in Georgia, USA. We also report the first molecular data from Posthodiplostomum sp. 8 in M. salmoides in the Caribbean. Metacercariae of most species were morphologically distinguished and all displayed narrow specificity for fish hosts, with no indication of parasite sharing among introduced and native fishes.more » « less
-
ABSTRACT PocheinaandAcrasisare two genera of heterolobosean sorocarpic amoebae within Acrasidae that have historically been considered close relatives. The two genera were differentiated based on their differing fruiting body morphologies. The validity of this taxonomic distinction was challenged when a SSU rRNA phylogenetic study placed an isolate morphologically identified as ‘Pocheina’roseawithin a clade ofAcrasis roseaisolates. The authors speculated that pocheinoid fruiting body morphology might be the result of aberrantA. roseafruiting body development, which if true, would nullify this taxonomic distinction between genera. To clarify Acrasidae systematics, we analyzed SSU rRNA and ITS region sequences from multiple isolates ofPocheina, Acrasis, andAllovahlkampfiagenerated by PCR and transcriptomics. We demonstrate that the initial SSU sequence attributed to ‘P. rosea’ originated from anA. roseaDNA contamination in its amplification reaction. Our analyses, based on morphology, SSU and 5.8S rRNA genes phylogenies, as well as comparative analyses of ITS1 and ITS2 sequences, resolve Acrasidae into three major lineages;Allovahlkampfiaand the strongly supported clades comprisingPocheinaandAcrasis. We confirm that the latter two genera can be identified by their fruiting body morphologies.more » « less
-
ABSTRACT PocheinaandAcrasisare two genera of heterolobosean sorocarpic amoebae within Acrasidae that have historically been considered close relatives. The two genera were differentiated based on their differing fruiting body morphologies. The validity of this taxonomic distinction was challenged when a SSU rRNA phylogenetic study placed an isolate morphologically identified as “Pocheina”roseawithin a clade ofAcrasis roseaisolates. The authors speculated that pocheinoid fruiting body morphology might be the result of aberrantAc.roseafruiting body development, which, if true, would nullify this taxonomic distinction between genera. To clarify Acrasidae systematics, we analyzed SSU rRNA and ITS region sequences from multiple isolates ofPocheina,Acrasis, andAllovahlkampfiagenerated by Polymerase Chain Reaction (PCR) and transcriptomics. We demonstrate that the initial SSU sequence attributed to “P.rosea” originated from anAc.roseaDNA contamination in its amplification reaction. Our analyses, based on morphology, SSU and 5.8S rRNA gene phylogenies, as well as comparative analyses of ITS1 and ITS2 sequences, resolve Acrasidae into three major lineages:Allovahlkampfiaand the strongly supported clades comprisingPocheinaandAcrasis. We confirm that the latter two genera can be identified by their fruiting body morphologies.more » « less
An official website of the United States government

