Abstract Fibricola and Neodiplostomum are diplostomid genera with very similar morphology that are currently separated based on their definitive hosts. Fibricola spp. are normally found in mammals, while Neodiplostomum spp. typically parasitize birds. Previously, no DNA sequence data was available for any member of Fibricola . We generated nuclear ribosomal and mtDNA sequences of Fibricola cratera (type-species), Fibricola lucidum and 6 species of Neodiplostomum . DNA sequences were used to examine phylogenetic interrelationships among Fibricola and Neodiplostomum and re-evaluate their systematics. Molecular phylogenies and morphological study suggest that Fibricola should be considered a junior synonym of Neodiplostomum . Therefore, we synonymize the two genera and transfer all members of Fibricola into Neodiplostomum . Specimens morphologically identified as Neodiplostomum cratera belonged to 3 distinct phylogenetic clades based on mitochondrial data. One of those clades also included sequences of specimens identified morphologically as Neodiplostomum lucidum . Further study is necessary to resolve the situation regarding the morphology of N. cratera . Our results demonstrated that some DNA sequences of N. americanum available in GenBank originate from misidentified Neodiplostomum banghami . Molecular phylogentic data revealed at least 2 independent host-switching events between avian and mammalian hosts in the evolutionary history of Neodiplostomum ; however, the directionality of these host-switching events remains unclear. 
                        more » 
                        « less   
                    
                            
                            Molecular phylogeny supports invalidation of Didelphodiplostomum amd Pharyngostomoides (Digenea: Diplostomidae) and reveals a Tylodelphys from mammals
                        
                    
    
            Alaria, Didelphodiplostomum and Pharyngostomoides are among genera of diplostomid digeneans known to parasitize mammalian definitive hosts. Despite numerous recent molecular phylogenetic studies of diplostomids, limited DNA sequence data is available from diplostomids parasitic in mammals. Herein, we provide the first 28S rDNA and cox1 mtDNA sequences from morphologically identified, adult specimens of Didelphodiplostomum and Pharyngostomoides. Newly generated 28S sequences were used to infer the phylogenetic interrelationships of these two genera among other major lineages of diplostomoideans. The phylogeny based on 28S and a review of morphology clearly suggests that Pharyngostomoides should be considered a junior synonym of Alaria, while Didelphodiplostomum should be considered a junior synonym of Tylodelphys. Pharyngostomoides procyonis (type species), Pharyngostomoides adenocephala and Pharyngostomoides dasyuri were transferred into Alaria as Alaria procyonis comb. nov., Alaria adenocephala comb. nov. and Alaria dasyuri comb. nov.; Didelphodiplostomum variabile (type species) and Didelphodiplostomum nunezae were transferred into Tylodelphys as Tylodelphys variabilis comb. nov. and Tylodelphys nunezae comb. nov. In addition, Alaria ovalis comb. nov. (formerly included in Pharyngostomoides) was restored and transferred into Alaria based on a morphological study of wellfixed, adult specimens and the comparison of cox1 DNA sequences among Alaria spp. The diplostomid genus Parallelorchis was restored based on review of morphology. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1852459
- PAR ID:
- 10316533
- Date Published:
- Journal Name:
- Zoological journal of the Linnean Society
- ISSN:
- 0024-4082
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Camponotus and Colobopsis are widely distributed and species-rich genera in the ant tribe Camponotini. Molecular phylogenetic studies demonstrate that they are not sister taxa, but several lineages within each genus have converged to a remarkable degree, confounding the taxonomy of these ants. Based on multiple lines of evidence, including worker and male morphology, we demonstrate that: (1) three species of “Camponotus” belonging to the subgenus Myrmotemnus, including its type species, are in fact members of the genus Colobopsis ; (2) four species previously assigned to Colobopsis belong to the subgenus Myrmamblys of Camponotus ; and (3) three Nearctic taxa recently placed in Colobopsis are members of the genus Camponotus and closely related to Camponotus clarithorax . These taxonomic findings yield the following new or revived combinations: Colobopsis moeschi ( comb. nov. ), Colobopsis moeschi lygaea ( comb. nov. ), Colobopsis nutans ( comb. nov. ), Colobopsis nutans cleliae ( comb. nov. ), and Colobopsis reichenspergeri ( comb. nov. ); Camponotus apostemata ( comb. nov. ), Camponotus aurelianus ( comb. rev. ), Camponotus cavibregma ( comb. nov. ), Camponotus horrens ( comb. rev. ), Camponotus politae ( comb. rev. ), Camponotus trajanus ( comb. rev. ), and Camponotus yogi ( comb. rev. ). A further consequence is the following generic synonymy (senior synonym listed first): Colobopsis = Myrmotemnus syn. nov. , and Camponotus = Dolophra syn. rev. At the species level, we argue that Camponotus apostemata and Camponotus cavibregma are junior synonyms ( syn. nov. ) of Camponotus yogi , and Camponotus quercicola is a junior synonym ( syn. nov. ) of Ca. laevigatus . Taxonomic comments are also provided on some members of the Camponotus reticulatus group, with Camponotus adustus ( stat. nov. ) and Ca. leucodiscus ( stat. rev. ) being recognized as distinct species rather than subspecies of Ca. bellus . A male-based diagnosis of the Camponotini is provided, and differences between the males of Colobopsis and Camponotus are documented and illustrated for the first time. This study reveals new character systems of potential value to the systematics of these ants, including features of the male genitalia, and emphasizes the value of reciprocal illumination between phylogenomics and critical morphological analysis.more » « less
- 
            Marvaldi, Adriana (Ed.)Abstract Sepidiini is a speciose tribe of desert-inhabiting darkling beetles, which contains a number of poorly defined taxonomic groups and is in need of revision at all taxonomic levels. In this study, two previously unrecognized lineages were discovered, based on morphological traits, among the extremely speciose genera Psammodes Kirby, 1819 (164 species and subspecies) and Ocnodes Fåhraeus, 1870 (144 species and subspecies), namely the Psammodes spinosus species-group and Ocnodes humeralis species-group. In order to test their phylogenetic placement, a phylogeny of the tribe was reconstructed based on analyses of DNA sequences from six nonoverlapping genetic loci (CAD, wg, COI JP, COI BC, COII, and 28S) using Bayesian and maximum likelihood inference methods. The aforementioned, morphologically defined, species-groups were recovered as distinct and well-supported lineages within Molurina + Phanerotomeina and are interpreted as independent genera, respectively, Tibiocnodes Gearner & Kamiński gen. nov. and Tuberocnodes Gearner & Kamiński gen. nov. A new species, Tuberocnodes synhimboides Gearner & Kamiński sp. nov., is also described. Furthermore, as the recovered phylogenetic placement of Tibiocnodes and Tuberocnodes undermines the monophyly of Molurina and Phanerotomeina, an analysis of the available diagnostic characters for those subtribes is also performed. As a consequence, Phanerotomeina is considered as a synonym of the newly redefined Molurina sens. nov. Finally, spectrograms of vibrations produced by substrate tapping of two Molurina species, Toktokkus vialis (Burchell, 1822) and T. synhimboides, are presented.more » « less
- 
            null (Ed.)Haraldiophyllum hawaiiense sp. nov. is described as a new mesophotic alga and a new genus record for the Hawaiian Islands. Six specimens were collected at a depth range of 81-93 m from Papahānaumokuākea Marine National Monument, and their morphology investigated, as well as molecular phylogenetic analyses of the plastidial ribulose-1,5- bisphosphate carboxylase–oxygenase large-subunit (rbcL) gene and a concatenated alignment of rbcL and nuclear large-subunit rRNA gene (LSU) sequences. Phylogenetic analyses supported H. hawaiiense sp. nov. as a distinct lineage within the genus Haraldiophyllum, and sister to a large clade containing the type species, H. bonnemaisonii, as well as H. crispatum and an undescribed European specimen. The six Hawaiian specimens were shown to be identical, but unique among other species of the genus as well as the recently segregated genus Neoharaldiophyllum, which comprises half of the species previously included in Haraldiophyllum. The vegetative morphology of H. hawaiiense sp. nov. resembles Neoharaldiophyllum udoense (formerly H. udoensis); however, no female or post-fertilization structures were found in the Hawaiian specimens to allow a more comprehensive comparison. The molecular phylogenies demonstrate that Haraldiophyllum is paraphyletic, suggesting either that the Myriogrammeae tribe includes undescribed genera, including Haraldiophyllum sensu stricto, or that Neoharaldiophyllum species should be transferred into the genus Haraldiophyllum. However, based on vegetative morphology and molecular analyses, and pending resolution of this taxonomic issue, the Hawaiian specimens are placed within the genus Haraldiophyllum. This new record for the Hawaiian Islands highlights the novel biodiversity from mesophotic depths, reaffirming the need for further investigation into the biodiversity of Mesophotic Coral Ecosystems.more » « less
- 
            The Rhoptrobothriidae are one of the more enigmatic families of cestodes of elasmobranchs. Opinions on the taxonomic status of the family’s three original genera (i.e., Myzophyllobothrium, Rhoptrobothrium, and Myzocephalus) have varied over the 115 years since they were erected. Some authors have considered all three valid, others have considered Rhoptrobothrium to be a synonym of Myzopyllobothrium or a genus inquirendum, yet others have considered Myzocephalus to be a synonym of the phyllobothriid genus Thysanocephalum. All three genera were established for specimens collected from eagle rays off Sri Lanka. The erection of Mixophyllobothrium for two specimens from a cowtail stingray off India three decades ago added additional confusion to the situation, with some authors considering it valid and others a synonym of Myzocephalus. These disagreements stem largely from differences in interpretation of the complex morphology of the scolex of members of these genera. Furthermore, with the exception of Rhoptrobothrium comprising four species, each genus is monotypic. All but Rhoptrobothrium has not been considered in detail for nearly a century, largely because of a lack of available material. The taxonomic status of these genera is assessed here based on light and scanning electron microscopy, and molecular data generated from new material collected from eagle rays off Indonesian and Malaysian Borneo, Japan, Sri Lanka, and Viet Nam. Morphological work indicates that the genera differ largely only in the degree of folding of the four remi that extend from the cephalic peduncle. A molecular phylogeny based on sequence data for the D1–D3 region of the 28S rRNA gene, which include new data for eight specimens of four species, indicates that Myzophyllobothrium, Myzocephalus, and Rhoptrobothrium are not mutually monophyletic. The latter two genera and Mixophyllobothrium are considered synonyms of Myzophyllobothrium and five species are transferred to that genus. Myzophyllobothrium okamuri n. comb. is considered a species inquirendum. Myzophyllobothrium nagasawai n. sp. is described from Aetobatus narutobiei off Japan. Myzophyllobothrium narinari n. comb. is re-described based on newly collected cestodes from the type host and locality (i.e., Aetobatus ocellatus off Sri Lanka). Despite consisting of only a single genus, the family status of the group is retained in recognition of the unusual configuration of the scolex, which bears four biloculate bothridia and four remi extending from the cephalic peduncle. The ordinal placement of the family remains uncertain, but affinities with the Phyllobothriidea, rather than “Tetraphyllidea” are considered.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    