skip to main content

Title: Investigating methane emissions from geologic microseepage in Western New York State, United States
Methane is a powerful greenhouse gas and a key player in atmospheric chemistry. Important uncertainties remain in the global atmospheric methane budget, with natural geologic emissions being one of the particularly uncertain terms. In recent bottom-up studies, geologic emissions have been estimated to comprise up to 10% of the global budget (40–60 Teragrams of methane per year, Tg CH4 yr–1). In contrast, top-down constraints from 14C of methane in preindustrial air extracted from ice cores indicate that the geologic methane source is approximately an order of magnitude lower. Recent bottom-up inventories propose microseepage (diffuse low-level flux of methane through soils over large areas) as the largest single component of the geologic methane flux. In this study, we present new measurements of methane microseepage from the Appalachian Basin (Western New York State) and compare these with prior microseepage measurements from other regions and with predicted values from the most recent bottom-up inventory. Our results show lower microseepage values than most prior data sets and indicate that positive microseepage fluxes in this region are not as widespread as previously assumed. A statistical analysis of our results indicates that mean microseepage flux in this region has very likely been overestimated by the bottom-up more » inventory, even though our measurements more likely than not underestimate the true mean flux. However, this is a small data set from a single region and as such cannot be used to evaluate the validity of the microseepage emissions inventory as a whole. Instead, the results demonstrate the need for a more extensive network of direct geologic emission measurements in support of improved bottom-up inventories. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Elementa: Science of the Anthropocene
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. To track progress towards keeping global warming well below 2 ∘C or even 1.5 ∘C, as agreed in the Paris Agreement, comprehensiveup-to-date and reliable information on anthropogenic emissions and removalsof greenhouse gas (GHG) emissions is required. Here we compile a new synthetic dataset on anthropogenic GHG emissions for 1970–2018 with afast-track extension to 2019. Our dataset is global in coverage and includesCO2 emissions, CH4 emissions, N2O emissions, as well as those from fluorinated gases (F-gases: HFCs, PFCs, SF6, NF3) andprovides country and sector details. We build this dataset from the version 6 release of the Emissions Database for Global Atmospheric Research (EDGAR v6) and three bookkeeping models for CO2 emissions from land use,land-use change, and forestry (LULUCF). We assess the uncertainties of global greenhouse gases at the 90 % confidence interval (5th–95thpercentile range) by combining statistical analysis and comparisons ofglobal emissions inventories and top-down atmospheric measurements with anexpert judgement informed by the relevant scientific literature. We identifyimportant data gaps for F-gas emissions. The agreement between our bottom-up inventory estimates and top-downatmospheric-based emissions estimates is relatively close for some F-gasspecies (∼ 10 % or less), but estimates can differ by an order of magnitude or more for others. Our aggregated F-gas estimate is about 10 %more »lower than top-down estimates in recent years. However, emissions from excluded F-gas species such aschlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) arecumulatively larger than the sum of the reported species. Using globalwarming potential values with a 100-year time horizon from the Sixth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC),global GHG emissions in 2018 amounted to 58 ± 6.1 GtCO2 eq.consisting of CO2 from fossil fuel combustion and industry (FFI) 38 ± 3.0 GtCO2, CO2-LULUCF 5.7 ± 4.0 GtCO2, CH4 10 ± 3.1 GtCO2 eq., N2O2.6 ± 1.6 GtCO2 eq., and F-gases 1.3 ± 0.40 GtCO2 eq. Initial estimates suggest further growth of 1.3 GtCO2 eq. in GHG emissions to reach 59 ± 6.6 GtCO2 eq. by 2019. Our analysis ofglobal trends in anthropogenic GHG emissions over the past 5 decades (1970–2018) highlights a pattern of varied but sustained emissions growth. There is high confidence that global anthropogenic GHG emissions haveincreased every decade, and emissions growth has been persistent across the different (groups of) gases. There is also high confidence that globalanthropogenic GHG emissions levels were higher in 2009–2018 than in any previous decade and that GHG emissions levels grew throughout the most recent decade. While the average annual GHG emissions growth rate slowed between2009 and 2018 (1.2 % yr−1) compared to 2000–2009 (2.4 % yr−1), the absolute increase in average annual GHG emissions by decade was neverlarger than between 2000–2009 and 2009–2018. Our analysis further revealsthat there are no global sectors that show sustained reductions in GHGemissions. There are a number of countries that have reduced GHG emissionsover the past decade, but these reductions are comparatively modest andoutgrown by much larger emissions growth in some developing countries suchas China, India, and Indonesia. There is a need to further develop independent, robust, and timely emissions estimates across all gases. As such, tracking progress in climate policy requires substantial investmentsin independent GHG emissions accounting and monitoring as well as in national and international statistical infrastructures. The data associatedwith this article (Minx et al., 2021) can be found at« less
  2. null (Ed.)
    Abstract. Flux measurements of nitrogen oxides (NOx) were made over London usingairborne eddy covariance from a low-flying aircraft. Seven low-altitude flights were conducted over Greater London, performing multiple overpasses across the city during eight days in July 2014. NOx fluxes across theGreater London region (GLR) exhibited high heterogeneity and strong diurnalvariability, with central areas responsible for the highest emission rates(20–30 mg m−2 h−1). Other high-emission areas included the M25 orbital motorway. The complexity of London's emission characteristics makes it challenging to pinpoint single emissions sources definitively usingairborne measurements. Multiple sources, including road transport andresidential, commercial and industrial combustion sources, are all likely to contribute to measured fluxes. Measured flux estimates were compared toscaled National Atmospheric Emissions Inventory (NAEI) estimates, accountingfor monthly, daily and hourly variability. Significant differences were found between the flux-driven emissions and the NAEI estimates acrossGreater London, with measured values up to 2 times higher in Central London than those predicted by the inventory. To overcome the limitations ofusing the national inventory to contextualise measured fluxes, we usedphysics-guided flux data fusion to train environmental response functions(ERFs) between measured flux and environmental drivers (meteorological and surface). The aim was to generate time-of-day emission surfaces usingcalculated ERF relationships for the entire GLR; 98 %more »spatial coverage was achieved across the GLR at 400 m2 spatial resolution. All flight legprojections showed substantial heterogeneity across the domain, with highemissions emanating from Central London and major road infrastructure. Thediurnal emission structure of the GLR was also investigated, through ERF,with the morning rush hour distinguished from lower emissions during the early afternoon. Overall, the integration of airborne fluxes with anERF-driven strategy enabled the first independent generation of surfaceNOx emissions, at high resolution using an eddy-covariance approach,for an entire city region.« less
  3. Accelerated warming in the Arctic has led to concern regarding the amount of carbon emission potential from Arctic water bodies. Yet, aquatic carbon dioxide (CO 2 ) and methane (CH 4 ) flux measurements remain scarce, particularly at high resolution and over long periods of time. Effluxes of methane (CH 4 ) and carbon dioxide (CO 2 ) from Toolik Lake, a deep glacial lake in northern Alaska, were measured for the first time with the direct eddy covariance (EC) flux technique during six ice-free lake periods (2010–2015). CO 2 flux estimates from the lake (daily average efflux of 16.7 ± 5.3 mmol m −2 d −1 ) were in good agreement with earlier estimates from 1975–1989 using different methods. CH 4 effluxes in 2010–2015 (averaging 0.13 ± 0.06 mmol m −2 d −1 ) showed an interannual variation that was 4.1 times greater than median diel variations, but mean fluxes were almost one order of magnitude lower than earlier estimates obtained from single water samples in 1990 and 2011–2012. The overall global warming potential (GWP) of Toolik Lake is thus governed mostly by CO 2 effluxes, contributing 86–93% of the ice-free period GWP of 26–90 g CO 2,eq mmore »−2 . Diel variation in fluxes was also important, with up to a 2-fold (CH 4 ) to 4-fold (CO 2 ) difference between the highest nighttime and lowest daytime effluxes. Within the summer ice-free period, on average, CH 4 fluxes increased 2-fold during the first half of the summer, then remained almost constant, whereas CO 2 effluxes remained almost constant over the entire summer, ending with a linear increase during the last 1–2 weeks of measurements. Due to the cold bottom temperatures of this 26 m deep lake, and the absence of ebullition and episodic flux events, Toolik Lake and other deep glacial lakes are likely not hot spots for greenhouse gas emissions, but they still contribute to the overall GWP of the Arctic.« less
  4. Abstract. Methane (CH4) emissions from the boreal and arcticregion are globally significant and highly sensitive to climate change.There is currently a wide range in estimates of high-latitude annualCH4 fluxes, where estimates based on land cover inventories andempirical CH4 flux data or process models (bottom-up approaches)generally are greater than atmospheric inversions (top-down approaches). Alimitation of bottom-up approaches has been the lack of harmonizationbetween inventories of site-level CH4 flux data and the land coverclasses present in high-latitude spatial datasets. Here we present acomprehensive dataset of small-scale, surface CH4 flux data from 540terrestrial sites (wetland and non-wetland) and 1247 aquatic sites (lakesand ponds), compiled from 189 studies. The Boreal–Arctic Wetland and LakeMethane Dataset (BAWLD-CH4) was constructed in parallel with acompatible land cover dataset, sharing the same land cover classes to enablerefined bottom-up assessments. BAWLD-CH4 includes information onsite-level CH4 fluxes but also on study design (measurement method,timing, and frequency) and site characteristics (vegetation, climate,hydrology, soil, and sediment types, permafrost conditions, lake size anddepth, and our determination of land cover class). The different land coverclasses had distinct CH4 fluxes, resulting from definitions that wereeither based on or co-varied with key environmental controls. Fluxes ofCH4 from terrestrial ecosystems were primarily influenced by watertable position, soil temperature,more »and vegetation composition, while CH4fluxes from aquatic ecosystems were primarily influenced by watertemperature, lake size, and lake genesis. Models could explain more of thebetween-site variability in CH4 fluxes for terrestrial than aquaticecosystems, likely due to both less precise assessments of lake CH4fluxes and fewer consistently reported lake site characteristics. Analysisof BAWLD-CH4 identified both land cover classes and regions within theboreal and arctic domain, where future studies should be focused, alongsidemethodological approaches. Overall, BAWLD-CH4 provides a comprehensivedataset of CH4 emissions from high-latitude ecosystems that are usefulfor identifying research opportunities, for comparison against new fielddata, and model parameterization or validation. BAWLD-CH4 can bedownloaded from (Kuhn et al., 2021).« less
  5. Small ponds account for a disproportionately high percentage of carbon dioxide emissions relative to their small surface area. It is therefore crucial to understand carbon flow in these ponds to refine the current global carbon budget, especially because climate change is affecting pond hydrology. High elevation ponds in the Elk Mountains of western Colorado are drying more frequently as the timing of snowmelt advances. We compared CO2 concentrations and fluxes among ponds of different hydroperiods over diel sampling periods during the course of the 2017 open-water period. CO2 concentrations were significantly negatively correlated with pond depth and averaged 77.6 ± 24.5 μmol L−1 (mean ± S.E.) across all ponds and sampling events. Ponds were up to twenty times supersaturated in CO2 with respect to the atmosphere. Flux was highly variable within individual ponds but correlated with time of sampling and was highest at night. Flux averaged 19.7 ± 18.8 mg CO2 m−2 h−1 across all ponds and sampling events. We also compared flux values obtained using modeled and empirical methods and found that widely-applied models of gas exchange rates using wind-based gas exchange (K) values yielded estimates of CO2 flux that were significantly higher than those obtained using the floating chamber approach, but estimates of CO2more »flux using globally averaged convection-based K values were lower than those obtained using the floating chambers. Lastly, we integrated soil vs. water efflux measurements with long-term patterns in hydrology to predict how total season-long efflux might change under the more rapid drying regimes and longer seasons that are already occurring in these systems. Because soil CO2 efflux averaged 277.0 ± 49.0 mg CO2 m−2 h−1, temporary ponds emitted 674.1 ± 99.4 kg CO2 m−2 over the course of the 2017 season from ice-out to refreezing, which was over twice as much as permanent and semi-permanent ponds. Our results emphasize that contributions of CO2 from small ponds to the global carbon budget estimates will vary with pond hydroperiod and sampling methodology, which have been overlooked given that most previous estimates were collected from limited sampling periods and from pond waters alone. Furthermore, pond CO2 contributions are predicted to increase over time as pond areas transition from efflux from water to efflux from soil.« less